import os import gradio as gr import pandas as pd import plotly.express as px from apscheduler.schedulers.background import BackgroundScheduler from src.assets.css_html_js import custom_css, custom_js from src.assets.text_content import ( TITLE, INTRODUCTION_TEXT, ABOUT_TEXT, EXAMPLE_CONFIG_TEXT, CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT, ) from src.utils import ( change_tab, restart_space, load_dataset_repo, process_model_name, process_model_type, ) LLM_PERF_LEADERBOARD_REPO = "optimum/llm-perf-leaderboard" LLM_PERF_DATASET_REPO = "optimum/llm-perf-dataset" OPTIMUM_TOKEN = os.environ.get("OPTIMUM_TOKEN", None) ALL_COLUMNS_MAPPING = { "weight_class": "Weight Class 🏋️", "model_type": "LLM Type 🤗", "best_scored_model": "Best Scored LLM 🏆", # "backend.name": "Backend 🏭", "backend.torch_dtype": "Dtype 📥", "quantization": "Quantization 🗜️", "optimizations": "Optimizations 🛠️", # "best_score": "Best Score (%) ⬆️", "generate.peak_memory(MB)": "Memory (MB) ⬇️", "generate.throughput(tokens/s)": "Throughput (tokens/s) ⬆️", "generate.energy_consumption(kWh/token)": "Energy (kWh/token) ⬇️", # } ALL_COLUMNS_DATATYPES = [ "str", "str", "markdown", # "str", "str", "str", "str", # "str", "number", "number", "number", # ] SORTING_COLUMN = ["perf_distance"] llm_perf_dataset_repo = load_dataset_repo(LLM_PERF_DATASET_REPO, OPTIMUM_TOKEN) def get_benchmark_df(benchmark="Succeeded-1xA100-80GB"): if llm_perf_dataset_repo: llm_perf_dataset_repo.git_pull() # load data benchmark_df = pd.read_csv(f"./llm-perf-dataset/reports/{benchmark}.csv") clusters_df = pd.read_csv("./llm-perf-dataset/Clustered-Open-LLM-Leaderboard.csv") # merge on model merged_df = benchmark_df.merge( clusters_df, left_on="model", right_on="best_scored_model" ) # fix energy consumption nans merged_df["generate.energy_consumption(kWh/token)"].fillna("N/A", inplace=True) # add optimizations merged_df["optimizations"] = merged_df["backend.bettertransformer"].apply( lambda x: "BetterTransformer" if x else "None" ) # add quantization scheme merged_df["quantization"] = merged_df["backend.quantization_strategy"].apply( lambda x: "BnB.4bit" if x == "bnb" else ("GPTQ.4bit" if x == "gptq" else "None") ) # distance to 100% score, normalized to 0, 1 score_distance = (100 - merged_df["best_score"]) / 100 # distance to 0s latency, normalized to 0, 1 latency_distance = merged_df["generate.latency(s)"] / ( merged_df["generate.latency(s)"].max() - merged_df["generate.latency(s)"].min() ) # distance to 0MB memory memory_distance = merged_df["forward.peak_memory(MB)"] / ( merged_df["forward.peak_memory(MB)"].max() - merged_df["forward.peak_memory(MB)"].min() ) # add perf distance merged_df["perf_distance"] = ( score_distance**2 + latency_distance**2 + memory_distance**2 ) ** 0.5 return merged_df def get_benchmark_table(bench_df): # add * to quantized models score copy_df = bench_df.copy() # add * to quantized models score since we can't garantee the score is the same copy_df["best_score"] = copy_df.apply( lambda x: f"{x['best_score']}**" if x["backend.quantization_strategy"] else x["best_score"], axis=1, ) # sort copy_df.sort_values(by=SORTING_COLUMN, ascending=True, inplace=True) # filter copy_df = copy_df[list(ALL_COLUMNS_MAPPING.keys())] # rename copy_df.rename(columns=ALL_COLUMNS_MAPPING, inplace=True) # transform copy_df["LLM Type 🤗"] = copy_df["LLM Type 🤗"].apply(process_model_type) copy_df["Best Scored LLM 🏆"] = copy_df["Best Scored LLM 🏆"].apply( process_model_name ) return copy_df def get_benchmark_plot(bench_df): fig = px.scatter( bench_df, y="best_score", x="generate.throughput(tokens/s)", size="generate.peak_memory(MB)", color="model_type", custom_data=list(ALL_COLUMNS_MAPPING.keys()), color_discrete_sequence=px.colors.qualitative.Light24, ) fig.update_layout( title={ "text": "Model Score vs. Latency vs. Memory", "y": 0.95, "x": 0.5, "xanchor": "center", "yanchor": "top", }, xaxis_title="Generation Throughput (tokens/s)", yaxis_title="Open LLM Score (%)", legend_title="Model Type", width=1200, height=600, ) fig.update_traces( hovertemplate="
".join( [ f"{ALL_COLUMNS_MAPPING[key]}: %{{customdata[{i}]}}" for i, key in enumerate(ALL_COLUMNS_MAPPING.keys()) ] ) ) return fig def filter_query( text, backends, datatypes, optimizations, score, memory, benchmark="Succeeded-1xA100-80GB", ): raw_df = get_benchmark_df(benchmark=benchmark) filtered_df = raw_df[ raw_df["best_scored_model"].str.lower().str.contains(text.lower()) & raw_df["backend.name"].isin(backends) & raw_df["backend.torch_dtype"].isin(datatypes) & ( pd.concat( [ raw_df["optimizations"].str.contains(optimization) for optimization in optimizations ], axis=1, ).any(axis="columns") if len(optimizations) > 0 else True ) & (raw_df["best_score"] >= score) & (raw_df["forward.peak_memory(MB)"] <= memory) ] filtered_table = get_benchmark_table(filtered_df) filtered_plot = get_benchmark_plot(filtered_df) return filtered_table, filtered_plot # Dataframes A100_df = get_benchmark_df(benchmark="Succeeded-1xA100-80GB") A100_table = get_benchmark_table(A100_df) A100_plot = get_benchmark_plot(A100_df) # Demo interface demo = gr.Blocks(css=custom_css) with demo: # leaderboard title gr.HTML(TITLE) # introduction text gr.Markdown(INTRODUCTION_TEXT, elem_classes="descriptive-text") # leaderboard tabs with gr.Tabs(elem_classes="A100-tabs") as A100_tabs: with gr.TabItem("🖥️ A100-80GB Benchmark 🏆", id=0): gr.HTML( "👉 Scroll to the right 👉 for more columns.", elem_id="descriptive-text" ) # Original leaderboard table A100_leaderboard = gr.components.Dataframe( value=A100_table, datatype=ALL_COLUMNS_DATATYPES, headers=list(ALL_COLUMNS_MAPPING.values()), elem_id="1xA100-table", ) with gr.TabItem("🖥️ A100-80GB Plot 📊", id=1): gr.HTML( "👆 Hover over the points 👆 for additional information.", elem_id="descriptive-text", ) # Original leaderboard plot A100_plotly = gr.components.Plot( value=A100_plot, elem_id="1xA100-plot", show_label=False, ) with gr.TabItem("Control Panel 🎛️", id=2): gr.HTML( "Use this control panel to filter the leaderboard's table and plot.", elem_id="descriptive-text", ) # control panel interface with gr.Row(): with gr.Column(scale=1): search_bar = gr.Textbox( label="Model 🤗", info="🔍 Search for a model name", elem_id="search-bar", ) with gr.Column(scale=1): with gr.Box(): score_slider = gr.Slider( label="Open LLM Score 📈", info="🎚️ Slide to minimum Open LLM score", value=0, elem_id="threshold-slider", ) with gr.Column(scale=1): with gr.Box(): memory_slider = gr.Slider( label="Peak Memory (MB) 📈", info="🎚️ Slide to maximum Peak Memory", minimum=0, maximum=80 * 1024, value=80 * 1024, elem_id="memory-slider", ) with gr.Row(): with gr.Column(scale=1): backend_checkboxes = gr.CheckboxGroup( label="Backends 🏭", choices=["pytorch", "onnxruntime"], value=["pytorch", "onnxruntime"], info="☑️ Select the backends", elem_id="backend-checkboxes", ) with gr.Column(scale=1): datatype_checkboxes = gr.CheckboxGroup( label="Dtypes 📥", choices=["float32", "float16"], value=["float32", "float16"], info="☑️ Select the load dtypes", elem_id="dtype-checkboxes", ) with gr.Column(scale=2): optimizations_checkboxes = gr.CheckboxGroup( label="Optimizations 🛠️", choices=["None", "BetterTransformer"], value=["None", "BetterTransformer"], info="☑️ Select the optimizations", elem_id="optimizations-checkboxes", ) with gr.Row(): filter_button = gr.Button( value="Filter 🚀", elem_id="filter-button", ) with gr.TabItem("About 📖", id=3): gr.HTML(ABOUT_TEXT, elem_classes="descriptive-text") gr.Markdown(EXAMPLE_CONFIG_TEXT, elem_classes="descriptive-text") demo.load( change_tab, A100_tabs, _js=custom_js, ) filter_button.click( filter_query, [ search_bar, backend_checkboxes, datatype_checkboxes, optimizations_checkboxes, score_slider, memory_slider, ], [A100_leaderboard, A100_plotly], ) with gr.Row(): with gr.Accordion("📙 Citation", open=False): citation_button = gr.Textbox( value=CITATION_BUTTON_TEXT, label=CITATION_BUTTON_LABEL, elem_id="citation-button", ).style(show_copy_button=True) # Restart space every hour scheduler = BackgroundScheduler() scheduler.add_job( restart_space, "interval", seconds=3600, args=[LLM_PERF_LEADERBOARD_REPO, OPTIMUM_TOKEN], ) scheduler.start() # Launch demo demo.queue(concurrency_count=40).launch()