import gradio as gr from src.utils import model_hyperlink, process_score LEADERBOARD_COLUMN_TO_DATATYPE = { # open llm "Model 🤗" :"markdown", "Arch 🏛️" :"markdown", "Params (B)": "number", "Open LLM Score (%)": "number", # deployment settings "DType 📥" :"str", "Backend 🏭" :"str", "Optimization 🛠️" :"str", "Quantization 🗜️" :"str", # primary measurements "Prefill Latency (s)": "number", "Decode Throughput (tokens/s)": "number", "Allocated Memory (MB)": "number", "Energy (tokens/kWh)": "number", # additional measurements "E2E Latency (s)": "number", "E2E Throughput (tokens/s)": "number", "Reserved Memory (MB)": "number", "Used Memory (MB)": "number", } def process_model(model_name): link = f"https://huggingface.co/{model_name}" return model_hyperlink(link, model_name) def get_leaderboard_df(llm_perf_df): df = llm_perf_df.copy() # transform for leaderboard df["Model 🤗"] = df["Model 🤗"].apply(process_model) # process quantization for leaderboard df["Open LLM Score (%)"] = df.apply( lambda x: process_score(x["Open LLM Score (%)"], x["Quantization 🗜️"]), axis=1, ) return df def create_leaderboard_table(llm_perf_df): # descriptive text gr.HTML("👉 Scroll to the right 👉 for additional columns.", elem_id="text") # get dataframe leaderboard_df = get_leaderboard_df(llm_perf_df) # create table leaderboard_table = gr.components.Dataframe( value=leaderboard_df, datatype=list(LEADERBOARD_COLUMN_TO_DATATYPE.values()), headers=list(LEADERBOARD_COLUMN_TO_DATATYPE.keys()), elem_id="table", ) return leaderboard_table