Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -5,13 +5,15 @@ import requests
|
|
5 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
6 |
|
7 |
# Model ve işlemciyi yükle
|
8 |
-
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base", torch_dtype=torch.
|
9 |
-
processor = AutoProcessor.from_pretrained("microsoft/Florence-2-base", trust_remote_code=True)
|
10 |
|
11 |
def process_image(image, task):
|
12 |
# Girdiyi hazırla
|
13 |
inputs = processor(text=task, images=image, return_tensors="pt")
|
14 |
-
|
|
|
|
|
|
|
15 |
# Çıktıyı oluştur
|
16 |
generated_ids = model.generate(
|
17 |
input_ids=inputs["input_ids"],
|
@@ -20,11 +22,11 @@ def process_image(image, task):
|
|
20 |
num_beams=3,
|
21 |
do_sample=False
|
22 |
)
|
23 |
-
|
24 |
# Sonucu işle
|
25 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
26 |
parsed_answer = processor.post_process_generation(generated_text, task=task, image_size=(image.width, image.height))
|
27 |
-
|
28 |
return parsed_answer
|
29 |
|
30 |
# Gradio arayüzü
|
|
|
5 |
from transformers import AutoProcessor, AutoModelForCausalLM
|
6 |
|
7 |
# Model ve işlemciyi yükle
|
8 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/Florence-2-base-mini", torch_dtype=torch.float32, trust_remote_code=True)
|
|
|
9 |
|
10 |
def process_image(image, task):
|
11 |
# Girdiyi hazırla
|
12 |
inputs = processor(text=task, images=image, return_tensors="pt")
|
13 |
+
|
14 |
+
# Giriş verilerini half precision'a dönüştür
|
15 |
+
inputs = {k: v.half() if isinstance(v, torch.Tensor) else v for k, v in inputs.items()}
|
16 |
+
|
17 |
# Çıktıyı oluştur
|
18 |
generated_ids = model.generate(
|
19 |
input_ids=inputs["input_ids"],
|
|
|
22 |
num_beams=3,
|
23 |
do_sample=False
|
24 |
)
|
25 |
+
|
26 |
# Sonucu işle
|
27 |
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
|
28 |
parsed_answer = processor.post_process_generation(generated_text, task=task, image_size=(image.width, image.height))
|
29 |
+
|
30 |
return parsed_answer
|
31 |
|
32 |
# Gradio arayüzü
|