Spaces:
Running
on
Zero
Running
on
Zero
import re | |
import subprocess | |
import os | |
import argparse | |
from mmcv import Config, DictAction | |
def init_parser(): | |
# Get config and work_dir from user | |
parser = argparse.ArgumentParser(description='Run the pipeline') | |
parser.add_argument('--config', help='config file', required=True) | |
parser.add_argument('--work_dir', help='work directory', required=True) | |
parser.add_argument('--best', action='store_true', help='work directory') | |
parser.add_argument('--supervision', type=str, default='decoder', help='adj supervision') | |
parser.add_argument('--ft_epochs', type=int, default=100, help='work directory') | |
parser.add_argument('--masking_ratio', type=float, default=0.5, help='work directory') | |
parser.add_argument('--lamda_masking', type=float, default=1.0, help='work directory') | |
args = parser.parse_args() | |
return args | |
def get_best_model(work_dir): | |
if os.path.exists(work_dir): | |
file_names = [filename for filename in os.listdir(work_dir) if filename.startswith("best_")] | |
if len(file_names) > 0: | |
file_name = file_names[0] | |
ckpt_path = f'{work_dir}/{file_name}' | |
else: | |
ckpt_path = f'{work_dir}/latest.pth' | |
return ckpt_path | |
def main(): | |
args = init_parser() | |
config = args.config | |
work_dir = args.work_dir | |
if args.best: | |
work_dir = f'{work_dir}_best_ckpt' | |
if not os.path.exists(work_dir): | |
os.makedirs(work_dir) | |
subprocess.run(['cp', config, work_dir]) | |
# -----------------------------BASE MODEL TRAINING-------------------------------- | |
base_workdir = f'{work_dir}/base' | |
cfg = Config.fromfile(args.config) | |
num_epochs = cfg.total_epochs | |
final_epoch_path = f'{base_workdir}/epoch_{num_epochs}.pth' | |
if not os.path.exists(final_epoch_path): | |
print("Running Base Model Training") | |
subprocess.run(['python', 'train.py', '--config', config, '--work-dir', base_workdir]) | |
# -----------------------------SKELETON MODEL TRAINING-------------------------------- | |
skeleton_work_dir = f'{work_dir}/base_skeleton' | |
skeleton_final_epoch_path = f'{skeleton_work_dir}/epoch_{args.ft_epochs}.pth' | |
if args.best: | |
best_ckpt = get_best_model(base_workdir) | |
load_from = best_ckpt | |
else: | |
load_from = final_epoch_path | |
new_cfg = Config.fromfile(args.config) | |
new_cfg.load_from = load_from | |
new_cfg.total_epochs = args.ft_epochs | |
new_cfg.model.freeze_backbone = True | |
new_cfg.model.keypoint_head.skeleton_head['learn_skeleton'] = True | |
new_cfg.model.keypoint_head.learn_skeleton = True | |
new_cfg.model.keypoint_head.masked_supervision = True | |
new_cfg.model.keypoint_head.masking_ratio = args.masking_ratio | |
new_cfg.model.keypoint_head.skeleton_loss_weight = args.lamda_masking | |
Config.dump(new_cfg, f'{work_dir}/skeleton_config.py') | |
if not os.path.exists(skeleton_final_epoch_path): | |
print("Running Base Model Training") | |
subprocess.run( | |
['python', 'train.py', '--config', f'{work_dir}/skeleton_config.py', '--work-dir', skeleton_work_dir]) | |
# -----------------------------BIAS MODEL TRAINING-------------------------------- | |
bias_work_dir = f'{work_dir}/base_skeleton_bias' | |
bias_final_epoch_path = f'{bias_work_dir}/epoch_{args.ft_epochs}.pth' | |
if args.best: | |
best_ckpt = get_best_model(skeleton_work_dir) | |
load_from = best_ckpt | |
else: | |
load_from = skeleton_final_epoch_path | |
new_cfg.load_from = load_from | |
new_cfg.model.keypoint_head.transformer.use_bias_attn_module = True | |
new_cfg.model.keypoint_head.transformer.attn_bias = True | |
new_cfg.model.keypoint_head.transformer.max_hops = 4 | |
new_cfg.model.keypoint_head.model_freeze = 'skeleton' | |
Config.dump(new_cfg, f'{work_dir}/bias_config.py') | |
if not os.path.exists(bias_final_epoch_path): | |
print("Running Bias Model Training") | |
subprocess.run( | |
['python', 'train.py', '--config', f'{work_dir}/bias_config.py', '--work-dir', bias_work_dir]) | |
# -----------------------------EVALUATION-------------------------------- | |
best_ckpt = get_best_model(bias_work_dir) | |
subprocess.run(['python', 'test.py', f'{work_dir}/bias_config.py', f'{bias_work_dir}/latest.pth']) | |
subprocess.run(['python', 'test.py', f'{work_dir}/bias_config.py', best_ckpt]) | |
if __name__ == '__main__': | |
main() | |