orhir's picture
Update gradio_utils/utils.py
be07db5 verified
import copy
import spaces
import json
import random
import collections.abc
import gradio as gr
import numpy as np
import psutil
import torch
from PIL import ImageDraw, Image, ImageEnhance
from matplotlib import pyplot as plt
from mmcv import Config
from mmcv.runner import load_checkpoint
from mmpose.core import wrap_fp16_model
from mmpose.models import build_posenet
from torchvision import transforms
import matplotlib.patheffects as mpe
import pickle
from pprint import pformat as pf
from EdgeCape import TopDownGenerateTargetFewShot
from demo import Resize_Pad
from EdgeCape.models import *
def process_img(support_image, global_state):
global_state['images']['image_orig'] = support_image
if global_state["load_example"]:
global_state["load_example"] = False
return global_state['images']['image_kp'], global_state
_, _ = reset_kp(global_state)
return support_image, global_state
def adj_mx_from_edges(num_pts, skeleton, device='cpu', normalization_fix=True):
adj_mx = torch.empty(0, device=device)
batch_size = len(skeleton)
for b in range(batch_size):
edges = torch.tensor(skeleton[b]).long()
adj = torch.zeros(num_pts, num_pts, device=device)
adj[edges[:, 0], edges[:, 1]] = 1
adj_mx = torch.concatenate((adj_mx, adj.unsqueeze(0)), dim=0)
trans_adj_mx = torch.transpose(adj_mx, 1, 2)
cond = (trans_adj_mx > adj_mx).float()
adj = adj_mx + trans_adj_mx * cond - adj_mx * cond
return adj
def plot_results(support_img, query_img, query_w,
skeleton=None, prediction=None, radius=6, in_color=None,
original_skeleton=None, img_alpha=0.6, target_keypoints=None):
h, w, c = support_img.shape
prediction = prediction[-1] * h
if isinstance(prediction, torch.Tensor):
prediction = prediction.numpy()
if isinstance(original_skeleton, list):
original_skeleton = adj_mx_from_edges(num_pts=prediction.shape[0], skeleton=[original_skeleton]).numpy()[0]
query_img = (query_img - np.min(query_img)) / (np.max(query_img) - np.min(query_img))
img = query_img
w = query_w
keypoint = prediction
adj = skeleton
color = None
f, axes = plt.subplots()
plt.imshow(img, alpha=img_alpha)
for k in range(keypoint.shape[0]):
if w[k] > 0:
kp = keypoint[k, :2]
c = (1, 0, 0, 0.75) if w[k] == 1 else (0, 0, 1, 0.6)
patch = plt.Circle(kp,
radius,
color=c,
path_effects=[mpe.withStroke(linewidth=2, foreground='black')],
zorder=200)
axes.add_patch(patch)
axes.text(kp[0], kp[1], k, fontsize=(radius + 4), color='white', ha="center", va="center",
zorder=300,
path_effects=[
mpe.withStroke(linewidth=max(1, int((radius + 4) / 5)), foreground='black')])
plt.draw()
if adj is not None:
max_skel_val = np.max(adj)
draw_skeleton = adj / max_skel_val * 6
for i in range(1, keypoint.shape[0]):
for j in range(0, i):
if w[i] > 0 and w[j] > 0 and original_skeleton[i][j] > 0:
if color is None:
num_colors = int((adj > 0.05).sum() / 2)
color = iter(plt.cm.rainbow(np.linspace(0, 1, num_colors + 1)))
c = next(color)
elif isinstance(color, str):
c = color
elif isinstance(color, collections.abc.Iterable):
c = next(color)
else:
raise ValueError("Color must be a string or an iterable")
if w[i] > 0 and w[j] > 0 and adj[i][j] > 0:
width = draw_skeleton[i][j]
stroke_width = width + (width / 3)
patch = plt.Line2D([keypoint[i, 0], keypoint[j, 0]],
[keypoint[i, 1], keypoint[j, 1]],
linewidth=width, color=c, alpha=0.6,
path_effects=[mpe.withStroke(linewidth=stroke_width, foreground='black')],
zorder=1)
axes.add_artist(patch)
plt.axis('off') # command for hiding the axis.
return plt
@spaces.GPU(duration=30)
def estimate(model, data):
model.cuda()
data['img_s'] = [s.cuda() for s in data['img_s']]
data['img_q'] = data['img_q'].cuda()
data['target_s'] = [s.cuda() for s in data['target_s']]
data['target_weight_s'] = [s.cuda() for s in data['target_weight_s']]
with torch.no_grad():
return model(**data)
def process(query_img, state,
cfg_path='configs/test/1shot_split1.py',
checkpoint_path='ckpt/1shot_split1.pth'):
print(state)
device = print_memory_usage()
cfg = Config.fromfile(cfg_path)
width, height, _ = np.array(state['images']['image_orig']).shape
kp_src_np = np.array(state['points']).copy().astype(np.float32)
kp_src_np[:, 0] = kp_src_np[:, 0] / width * 256
kp_src_np[:, 1] = kp_src_np[:, 1] / height * 256
kp_src_np = kp_src_np.copy()
kp_src_tensor = torch.tensor(kp_src_np).float()
preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)),
Resize_Pad(256, 256)
])
if len(state['skeleton']) == 0:
state['skeleton'] = [(0, 0)]
support_img = preprocess(state['images']['image_orig']).flip(0)[None]
np_query = np.array(query_img)[:, :, ::-1].copy()
q_img = preprocess(np_query).flip(0)[None]
# Create heatmap from keypoints
genHeatMap = TopDownGenerateTargetFewShot()
data_cfg = cfg.data_cfg
data_cfg['image_size'] = np.array([256, 256])
data_cfg['joint_weights'] = None
data_cfg['use_different_joint_weights'] = False
kp_src_3d = torch.cat(
(kp_src_tensor, torch.zeros(kp_src_tensor.shape[0], 1)), dim=-1)
kp_src_3d_weight = torch.cat(
(torch.ones_like(kp_src_tensor),
torch.zeros(kp_src_tensor.shape[0], 1)), dim=-1)
target_s, target_weight_s = genHeatMap._msra_generate_target(data_cfg,
kp_src_3d,
kp_src_3d_weight,
sigma=1)
target_s = torch.tensor(target_s).float()[None]
target_weight_s = torch.ones_like(
torch.tensor(target_weight_s).float()[None])
data = {
'img_s': [support_img],
'img_q': q_img,
'target_s': [target_s],
'target_weight_s': [target_weight_s],
'target_q': None,
'target_weight_q': None,
'return_loss': False,
'img_metas': [{'sample_skeleton': [state['skeleton']],
'query_skeleton': state['skeleton'],
'sample_joints_3d': [kp_src_3d],
'query_joints_3d': kp_src_3d,
'sample_center': [kp_src_tensor.mean(dim=0)],
'query_center': kp_src_tensor.mean(dim=0),
'sample_scale': [
kp_src_tensor.max(dim=0)[0] -
kp_src_tensor.min(dim=0)[0]
],
'query_scale': kp_src_tensor.max(dim=0)[0] -
kp_src_tensor.min(dim=0)[0],
'sample_rotation': [0],
'query_rotation': 0,
'sample_bbox_score': [1],
'query_bbox_score': 1,
'query_image_file': '',
'sample_image_file': [''],
}]
}
# Load model
model = build_posenet(cfg.model)
fp16_cfg = cfg.get('fp16', None)
if fp16_cfg is not None:
wrap_fp16_model(model)
load_checkpoint(model, checkpoint_path, map_location='cpu')
model.eval()
outputs = estimate(model, data)
# visualize results
vis_s_weight = target_weight_s[0]
vis_s_image = support_img[0].detach().cpu().numpy().transpose(1, 2, 0)
vis_q_image = q_img[0].detach().cpu().numpy().transpose(1, 2, 0)
support_kp = kp_src_3d
out = plot_results(vis_s_image,
vis_q_image,
vis_s_weight,
skeleton=outputs['skeleton'][1],
prediction=torch.tensor(outputs['points']).squeeze().cpu(),
original_skeleton=state['skeleton'],
img_alpha=1.0,
)
return out
def update_examples(support_img, query_image, global_state_str):
example_state = json.loads(global_state_str)
example_state["load_example"] = True
example_state["curr_type_point"] = "start"
example_state["prev_point"] = None
example_state['images'] = {}
example_state['images']['image_orig'] = support_img
example_state['images']['image_kp'] = support_img
example_state['images']['image_skeleton'] = support_img
image_draw = example_state['images']['image_orig'].copy()
for xy in example_state['points']:
image_draw = update_image_draw(
image_draw,
xy,
example_state
)
kp_image = image_draw.copy()
example_state['images']['image_kp'] = kp_image
pts_list = example_state['points']
for limb in example_state['skeleton']:
prev_point = pts_list[limb[0]]
curr_point = pts_list[limb[1]]
points = [prev_point, curr_point]
image_draw = draw_limbs_on_image(image_draw,
points
)
skel_image = image_draw.copy()
example_state['images']['image_skel'] = skel_image
return (support_img,
kp_image,
skel_image,
query_image,
example_state)
def get_select_coords(global_state,
evt: gr.SelectData
):
"""This function only support click for point selection
"""
xy = evt.index
global_state["points"].append(xy)
image_raw = global_state['images']['image_kp']
image_draw = update_image_draw(
image_raw,
xy,
global_state
)
global_state['images']['image_kp'] = image_draw
return global_state, image_draw
def get_closest_point_idx(pts_list, xy):
x, y = xy
closest_point = min(pts_list, key=lambda p: (p[0] - x) ** 2 + (p[1] - y) ** 2)
closest_point_index = pts_list.index(closest_point)
return closest_point_index
def reset_skeleton(global_state):
image = global_state["images"]["image_kp"]
global_state["images"]["image_skel"] = image
global_state["skeleton"] = []
global_state["curr_type_point"] = "start"
global_state["prev_point"] = None
return image
def reset_kp(global_state):
image = global_state["images"]["image_orig"]
global_state["images"]["image_kp"] = image
global_state["images"]["image_skel"] = image
global_state["skeleton"] = []
global_state["points"] = []
global_state["curr_type_point"] = "start"
global_state["prev_point"] = None
return image, image
def select_skeleton(global_state,
evt: gr.SelectData,
):
xy = evt.index
pts_list = global_state["points"]
closest_point_idx = get_closest_point_idx(pts_list, xy)
image_raw = global_state['images']['image_skel']
if global_state["curr_type_point"] == "end":
prev_point_idx = global_state["prev_point_idx"]
prev_point = pts_list[prev_point_idx]
current_point = pts_list[closest_point_idx]
points = [prev_point, current_point]
image_draw = draw_limbs_on_image(image_raw,
points
)
global_state['images']['image_skel'] = image_draw
global_state['skeleton'].append([prev_point_idx, closest_point_idx])
global_state["curr_type_point"] = "start"
global_state["prev_point_idx"] = None
else:
global_state["prev_point_idx"] = closest_point_idx
global_state["curr_type_point"] = "end"
return global_state, global_state['images']['image_skel']
def reverse_point_pairs(points):
new_points = []
for p in points:
new_points.append([p[1], p[0]])
return new_points
def update_image_draw(image, points, global_state):
if len(global_state["points"]) < 2:
alpha = 0.5
else:
alpha = 1.0
image_draw = draw_points_on_image(image, points, alpha=alpha)
return image_draw
def print_memory_usage():
# Print system memory usage
print(f"System memory usage: {psutil.virtual_memory().percent}%")
# Print GPU memory usage
if torch.cuda.is_available():
device = torch.device("cuda")
print(f"GPU memory usage: {torch.cuda.memory_allocated() / 1e9} GB")
print(
f"Max GPU memory usage: {torch.cuda.max_memory_allocated() / 1e9} GB")
device_properties = torch.cuda.get_device_properties(device)
available_memory = device_properties.total_memory - \
torch.cuda.max_memory_allocated()
print(f"Available GPU memory: {available_memory / 1e9} GB")
else:
device = "cpu"
print("No GPU available")
return device
def draw_limbs_on_image(image,
points,):
color = tuple(random.choices(range(256), k=3))
overlay_rgba = Image.new("RGBA", image.size, 0)
overlay_draw = ImageDraw.Draw(overlay_rgba)
p_start, p_target = points
if p_start is not None and p_target is not None:
p_draw = int(p_start[0]), int(p_start[1])
t_draw = int(p_target[0]), int(p_target[1])
overlay_draw.line(
(p_draw[0], p_draw[1], t_draw[0], t_draw[1]),
fill=color,
width=10,
)
return Image.alpha_composite(image.convert("RGBA"),
overlay_rgba).convert("RGB")
def draw_points_on_image(image,
points,
radius_scale=0.01,
alpha=1.):
if alpha < 1:
enhancer = ImageEnhance.Brightness(image)
image = enhancer.enhance(1.1)
overlay_rgba = Image.new("RGBA", image.size, 0)
overlay_draw = ImageDraw.Draw(overlay_rgba)
p_color = (255, 0, 0)
rad_draw = int(image.size[0] * radius_scale)
if points is not None:
p_draw = int(points[0]), int(points[1])
overlay_draw.ellipse(
(
p_draw[0] - rad_draw,
p_draw[1] - rad_draw,
p_draw[0] + rad_draw,
p_draw[1] + rad_draw,
),
fill=p_color,
)
return Image.alpha_composite(image.convert("RGBA"), overlay_rgba).convert("RGB")
def pickle_trick(obj, max_depth=10):
output = {}
if max_depth <= 0:
return output
try:
pickle.dumps(obj)
except (pickle.PicklingError, TypeError) as e:
failing_children = []
if hasattr(obj, "__dict__"):
for k, v in obj.__dict__.items():
result = pickle_trick(v, max_depth=max_depth - 1)
if result:
failing_children.append(result)
output = {
"fail": obj,
"err": e,
"depth": max_depth,
"failing_children": failing_children
}
return output