Spaces:
Sleeping
Sleeping
import argparse | |
import copy | |
import os | |
import pickle | |
import random | |
import cv2 | |
import numpy as np | |
import torch | |
from mmcv import Config, DictAction | |
from mmcv.cnn import fuse_conv_bn | |
from mmcv.runner import load_checkpoint | |
from mmpose.core import wrap_fp16_model | |
from mmpose.models import build_posenet | |
from torchvision import transforms | |
from models import * | |
import torchvision.transforms.functional as F | |
from tools.visualization import plot_results | |
COLORS = [ | |
[255, 0, 0], [255, 85, 0], [255, 170, 0], [255, 255, 0], [170, 255, 0], | |
[85, 255, 0], [0, 255, 0], [0, 255, 85], [0, 255, 170], [0, 255, 255], | |
[0, 170, 255], [0, 85, 255], [0, 0, 255], [85, 0, 255], [170, 0, 255], | |
[255, 0, 255], [255, 0, 170], [255, 0, 85], [255, 0, 0]] | |
class Resize_Pad: | |
def __init__(self, w=256, h=256): | |
self.w = w | |
self.h = h | |
def __call__(self, image): | |
_, w_1, h_1 = image.shape | |
ratio_1 = w_1 / h_1 | |
# check if the original and final aspect ratios are the same within a margin | |
if round(ratio_1, 2) != 1: | |
# padding to preserve aspect ratio | |
if ratio_1 > 1: # Make the image higher | |
hp = int(w_1 - h_1) | |
hp = hp // 2 | |
image = F.pad(image, (hp, 0, hp, 0), 0, "constant") | |
return F.resize(image, [self.h, self.w]) | |
else: | |
wp = int(h_1 - w_1) | |
wp = wp // 2 | |
image = F.pad(image, (0, wp, 0, wp), 0, "constant") | |
return F.resize(image, [self.h, self.w]) | |
else: | |
return F.resize(image, [self.h, self.w]) | |
def transform_keypoints_to_pad_and_resize(keypoints, image_size): | |
trans_keypoints = keypoints.clone() | |
h, w = image_size[:2] | |
ratio_1 = w / h | |
if ratio_1 > 1: | |
# width is bigger than height - pad height | |
hp = int(w - h) | |
hp = hp // 2 | |
trans_keypoints[:, 1] = keypoints[:, 1] + hp | |
trans_keypoints *= (256. / w) | |
else: | |
# height is bigger than width - pad width | |
wp = int(image_size[1] - image_size[0]) | |
wp = wp // 2 | |
trans_keypoints[:, 0] = keypoints[:, 0] + wp | |
trans_keypoints *= (256. / h) | |
return trans_keypoints | |
def parse_args(): | |
parser = argparse.ArgumentParser(description='Pose Anything Demo') | |
parser.add_argument('--support', help='Image file') | |
parser.add_argument('--query', help='Image file') | |
parser.add_argument('--config', default=None, help='test config file path') | |
parser.add_argument('--checkpoint', default=None, help='checkpoint file') | |
parser.add_argument('--outdir', default='output', help='checkpoint file') | |
parser.add_argument( | |
'--fuse-conv-bn', | |
action='store_true', | |
help='Whether to fuse conv and bn, this will slightly increase' | |
'the inference speed') | |
parser.add_argument( | |
'--cfg-options', | |
nargs='+', | |
action=DictAction, | |
default={}, | |
help='override some settings in the used config, the key-value pair ' | |
'in xxx=yyy format will be merged into config file. For example, ' | |
"'--cfg-options model.backbone.depth=18 model.backbone.with_cp=True'") | |
args = parser.parse_args() | |
return args | |
def merge_configs(cfg1, cfg2): | |
# Merge cfg2 into cfg1 | |
# Overwrite cfg1 if repeated, ignore if value is None. | |
cfg1 = {} if cfg1 is None else cfg1.copy() | |
cfg2 = {} if cfg2 is None else cfg2 | |
for k, v in cfg2.items(): | |
if v: | |
cfg1[k] = v | |
return cfg1 | |
def main(): | |
random.seed(0) | |
np.random.seed(0) | |
torch.manual_seed(0) | |
args = parse_args() | |
cfg = Config.fromfile(args.config) | |
if args.cfg_options is not None: | |
cfg.merge_from_dict(args.cfg_options) | |
# set cudnn_benchmark | |
if cfg.get('cudnn_benchmark', False): | |
torch.backends.cudnn.benchmark = True | |
cfg.data.test.test_mode = True | |
os.makedirs(args.outdir, exist_ok=True) | |
# Load data | |
support_img = cv2.imread(args.support) | |
query_img = cv2.imread(args.query) | |
if support_img is None or query_img is None: | |
raise ValueError('Fail to read images') | |
preprocess = transforms.Compose([ | |
transforms.ToTensor(), | |
Resize_Pad(cfg.model.encoder_config.img_size, cfg.model.encoder_config.img_size)]) | |
# frame = copy.deepcopy(support_img) | |
padded_support_img = preprocess(support_img).cpu().numpy().transpose(1, 2, 0) * 255 | |
frame = copy.deepcopy(padded_support_img.astype(np.uint8).copy()) | |
kp_src = [] | |
skeleton = [] | |
count = 0 | |
prev_pt = None | |
prev_pt_idx = None | |
color_idx = 0 | |
def selectKP(event, x, y, flags, param): | |
nonlocal kp_src, frame | |
# if we are in points selection mode, the mouse was clicked, | |
# list of points with the (x, y) location of the click | |
# and draw the circle | |
if event == cv2.EVENT_LBUTTONDOWN: | |
kp_src.append((x, y)) | |
cv2.circle(frame, (x, y), 2, (0, 0, 255), 1) | |
cv2.imshow("Source", frame) | |
if event == cv2.EVENT_RBUTTONDOWN: | |
kp_src = [] | |
frame = copy.deepcopy(support_img) | |
cv2.imshow("Source", frame) | |
def draw_line(event, x, y, flags, param): | |
nonlocal skeleton, kp_src, frame, count, prev_pt, prev_pt_idx, marked_frame, color_idx | |
if event == cv2.EVENT_LBUTTONDOWN: | |
closest_point = min(kp_src, key=lambda p: (p[0] - x) ** 2 + (p[1] - y) ** 2) | |
closest_point_index = kp_src.index(closest_point) | |
if color_idx < len(COLORS): | |
c = COLORS[color_idx] | |
else: | |
c = random.choices(range(256), k=3) | |
color = color_idx | |
cv2.circle(frame, closest_point, 2, c, 1) | |
if count == 0: | |
prev_pt = closest_point | |
prev_pt_idx = closest_point_index | |
count = count + 1 | |
cv2.imshow("Source", frame) | |
else: | |
cv2.line(frame, prev_pt, closest_point, c, 2) | |
cv2.imshow("Source", frame) | |
count = 0 | |
skeleton.append((prev_pt_idx, closest_point_index)) | |
color_idx = color_idx + 1 | |
elif event == cv2.EVENT_RBUTTONDOWN: | |
frame = copy.deepcopy(marked_frame) | |
cv2.imshow("Source", frame) | |
count = 0 | |
color_idx = 0 | |
skeleton = [] | |
prev_pt = None | |
cv2.namedWindow("Source", cv2.WINDOW_NORMAL) | |
cv2.resizeWindow('Source', 800, 600) | |
cv2.setMouseCallback("Source", selectKP) | |
cv2.imshow("Source", frame) | |
# keep looping until points have been selected | |
print('Press any key when finished marking the points!! ') | |
while True: | |
if cv2.waitKey(1) > 0: | |
break | |
marked_frame = copy.deepcopy(frame) | |
cv2.setMouseCallback("Source", draw_line) | |
print('Press any key when finished creating skeleton!!') | |
while True: | |
if cv2.waitKey(1) > 0: | |
break | |
cv2.destroyAllWindows() | |
kp_src = torch.tensor(kp_src).float() | |
preprocess = transforms.Compose([ | |
transforms.ToTensor(), | |
transforms.Normalize((0.485, 0.456, 0.406), (0.229, 0.224, 0.225)), | |
Resize_Pad(cfg.model.encoder_config.img_size, cfg.model.encoder_config.img_size)]) | |
if len(skeleton) == 0: | |
skeleton = [(0, 0)] | |
support_img = preprocess(support_img).flip(0)[None] | |
query_img = preprocess(query_img).flip(0)[None] | |
# Create heatmap from keypoints | |
genHeatMap = TopDownGenerateTargetFewShot() | |
data_cfg = cfg.data_cfg | |
data_cfg['image_size'] = np.array([cfg.model.encoder_config.img_size, cfg.model.encoder_config.img_size]) | |
data_cfg['joint_weights'] = None | |
data_cfg['use_different_joint_weights'] = False | |
kp_src_3d = torch.concatenate((kp_src, torch.zeros(kp_src.shape[0], 1)), dim=-1) | |
kp_src_3d_weight = torch.concatenate((torch.ones_like(kp_src), torch.zeros(kp_src.shape[0], 1)), dim=-1) | |
target_s, target_weight_s = genHeatMap._msra_generate_target(data_cfg, kp_src_3d, kp_src_3d_weight, sigma=1) | |
target_s = torch.tensor(target_s).float()[None] | |
target_weight_s = torch.tensor(target_weight_s).float()[None] | |
data = { | |
'img_s': [support_img], | |
'img_q': query_img, | |
'target_s': [target_s], | |
'target_weight_s': [target_weight_s], | |
'target_q': None, | |
'target_weight_q': None, | |
'return_loss': False, | |
'img_metas': [{'sample_skeleton': [skeleton], | |
'query_skeleton': skeleton, | |
'sample_joints_3d': [kp_src_3d], | |
'query_joints_3d': kp_src_3d, | |
'sample_center': [kp_src.mean(dim=0)], | |
'query_center': kp_src.mean(dim=0), | |
'sample_scale': [kp_src.max(dim=0)[0] - kp_src.min(dim=0)[0]], | |
'query_scale': kp_src.max(dim=0)[0] - kp_src.min(dim=0)[0], | |
'sample_rotation': [0], | |
'query_rotation': 0, | |
'sample_bbox_score': [1], | |
'query_bbox_score': 1, | |
'query_image_file': '', | |
'sample_image_file': [''], | |
}] | |
} | |
# Load model | |
model = build_posenet(cfg.model) | |
fp16_cfg = cfg.get('fp16', None) | |
if fp16_cfg is not None: | |
wrap_fp16_model(model) | |
load_checkpoint(model, args.checkpoint, map_location='cpu') | |
if args.fuse_conv_bn: | |
model = fuse_conv_bn(model) | |
model.eval() | |
with torch.no_grad(): | |
outputs = model(**data) | |
# visualize results | |
vis_s_weight = target_weight_s[0] | |
vis_q_weight = target_weight_s[0] | |
vis_s_image = support_img[0].detach().cpu().numpy().transpose(1, 2, 0) | |
vis_q_image = query_img[0].detach().cpu().numpy().transpose(1, 2, 0) | |
support_kp = kp_src_3d | |
plot_results(vis_s_image, | |
vis_q_image, | |
support_kp, | |
vis_s_weight, | |
None, | |
vis_q_weight, | |
skeleton, | |
None, | |
torch.tensor(outputs['points']).squeeze(0), | |
out_dir=args.outdir) | |
if __name__ == '__main__': | |
main() | |