orionweller's picture
minor improvements
14955d2
raw
history blame
13.2 kB
import streamlit as st
import os
import pathlib
import pandas as pd
from collections import defaultdict
import json
import copy
import re
import tqdm
import plotly.express as px
import pandas as pd
from nltk.corpus import stopwords
from nltk.stem import PorterStemmer
from nltk.tokenize import word_tokenize
from collections import Counter
import string
import os
import streamlit as st
# Ensure you've downloaded the set of stop words the first time you run this
import nltk
# only download if they don't exist
# if not os.path.exists(os.path.join(nltk.data.find('corpora'), 'stopwords')):
nltk.download('punkt')
nltk.download('stopwords')
from dataset_loading import load_local_qrels, load_local_corpus, load_local_queries
def preprocess_document(doc):
"""
Tokenizes, removes punctuation, stopwords, and stems words in a single document.
"""
# Lowercase
doc = doc.lower()
# Remove punctuation
doc = doc.translate(str.maketrans('', '', string.punctuation))
# Tokenize
tokens = word_tokenize(doc)
# Remove stop words
stop_words = set(stopwords.words('english'))
filtered_tokens = [word for word in tokens if word not in stop_words]
# Stemming
stemmer = PorterStemmer()
stemmed_tokens = [stemmer.stem(word) for word in filtered_tokens]
return stemmed_tokens
@st.cache_data
def find_dividing_words(documents):
"""
Identifies candidate words that might split the set of documents into two groups.
"""
all_words = []
per_doc_word_counts = []
i = 0
for doc in documents:
print(i)
preprocessed_doc = preprocess_document(doc)
all_words.extend(preprocessed_doc)
per_doc_word_counts.append(Counter(preprocessed_doc))
i += 1
# Overall word frequency
overall_word_counts = Counter(all_words)
# Find words that appear in roughly half the documents
num_docs = len(documents)
candidate_words = []
for word, count in overall_word_counts.items():
doc_frequency = sum(1 for doc_count in per_doc_word_counts if doc_count[word] > 0)
if 0.35 * num_docs <= doc_frequency <= 0.75 * num_docs:
candidate_words.append(word)
print("Done with dividing words")
return candidate_words
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
st.set_page_config(layout="wide")
current_checkboxes = []
query_input = None
@st.cache_data
def convert_df(df):
# IMPORTANT: Cache the conversion to prevent computation on every rerun
return df.to_csv(path_or_buf=None, index=False, quotechar='"').encode('utf-8')
def create_histogram_relevant_docs(relevant_df):
# turn results into a dataframe and then plot
fig = px.histogram(relevant_df, x="relevant_docs")
# make it fit in one column
fig.update_layout(
height=400,
width=250
)
return fig
def get_current_data():
cur_query_data = []
cur_query = query_input.replace("\n", "\\n")
for doc_id, checkbox in current_checkboxes:
if checkbox:
cur_query_data.append({
"new_narrative": cur_query,
"qid": st.session_state.selectbox_instance,
"doc_id": doc_id,
"is_relevant": 0
})
# return the data as a CSV pandas
return convert_df(pd.DataFrame(cur_query_data))
@st.cache_data
def escape_markdown(text):
# List of characters to escape
# Adding backslash to the list of special characters to escape itself as well
text = text.replace("``", "\"")
text = text.replace("$", "\$")
special_chars = ['\\', '`', '*', '_', '{', '}', '[', ']', '(', ')', '#', '+', '-', '.', '!', '|', "$"]
# Escaping each special character
escaped_text = "".join(f"\\{char}" if char in special_chars else char for char in text)
return escaped_text
@st.cache_data
def highlight_text(text, splitting_words):
# remove anything that will mess up markdown
text = escape_markdown(text)
changed = False
if not len(splitting_words):
return text, changed
def replace_function(match):
return f'<span style="background-color: #FFFF00">{match.group(0)}</span>'
# Compile a single regular expression pattern for all splitting words
pattern = '|'.join([re.escape(word) for word in splitting_words])
# Perform case-insensitive replacement
new_text, num_subs = re.subn(pattern, replace_function, text, flags=re.IGNORECASE)
if num_subs > 0:
changed = True
return new_text, changed
if 'cur_instance_num' not in st.session_state:
st.session_state.cur_instance_num = -1
def validate(config_option, file_loaded):
if config_option != "None" and file_loaded is None:
st.error("Please upload a file for " + config_option)
st.stop()
with st.sidebar:
st.title("Options")
st.header("Upload corpus")
corpus_file = st.file_uploader("Choose a file", key="corpus")
corpus = load_local_corpus(corpus_file)
st.header("Upload queries")
queries_file = st.file_uploader("Choose a file", key="queries")
queries = load_local_queries(queries_file)
st.header("Upload qrels")
qrels_file = st.file_uploader("Choose a file", key="qrels")
qrels = load_local_qrels(qrels_file)
# add a checkbox to turn off highlighting
st.header("Highlighting Off")
highlighting_off = st.checkbox("Turn off highlighting", key="highlighting_off")
# add a checkbox to turn off word suggestions
st.header("Word Suggestions Off")
word_suggestions_off = st.checkbox("Turn off word suggestions", key="word_suggestions_off")
# use only Qrels with relevance 2
st.header("Use only Qrels with relevance 2")
use_only_relevance_2 = st.checkbox("Use only Qrels with relevance 2", key="use_only_relevance_2")
## make sure all qids in qrels are in queries and write out a warning if not
if queries is not None and qrels is not None:
missing_qids = set(qrels.keys()) - set(queries.keys()) | set(queries.keys()) - set(qrels.keys())
if len(missing_qids) > 0:
st.warning(f"The following qids in qrels are not in queries and will be deleted: {missing_qids}")
# remove them from qrels and queries
for qid in missing_qids:
if qid in qrels:
del qrels[qid]
if qid in queries:
del queries[qid]
if use_only_relevance_2:
# remove all qrels that are not relevance 2
for qid, doc_rels in qrels.items():
qrels[qid] = {docid: rel for docid, rel in doc_rels.items() if rel == 2}
# remove all queries that have no qrels
queries = {qid: text for qid, text in queries.items() if qid in qrels}
data = []
for key, value in qrels.items():
data.append({"relevant_docs": len(value), "qid": key})
relevant_df = pd.DataFrame(data)
z = st.header("Analysis Options")
# sliderbar of how many Top N to choose
n_relevant_docs = st.slider("Number of relevant docs", 1, 999, 100)
col1, col2 = st.columns([1, 3], gap="large")
if corpus is not None and queries is not None and qrels is not None:
with st.sidebar:
st.success("All files uploaded")
with col1:
# breakpoint()
qids_with_less = relevant_df[relevant_df["relevant_docs"] < n_relevant_docs].qid.tolist()
set_of_cols = set(qrels.keys()).intersection(set(qids_with_less))
container_for_nav = st.container()
name_of_columns = sorted([item for item in set_of_cols])
instances_to_use = name_of_columns
st.title("Instances")
def sync_from_drop():
if st.session_state.selectbox_instance == "Overview":
st.session_state.number_of_col = -1
st.session_state.cur_instance_num = -1
else:
index_of_obj = name_of_columns.index(st.session_state.selectbox_instance)
# print("Index of obj: ", index_of_obj, type(index_of_obj))
st.session_state.number_of_col = index_of_obj
st.session_state.cur_instance_num = index_of_obj
def sync_from_number():
st.session_state.cur_instance_num = st.session_state.number_of_col
# print("Session state number of col: ", st.session_state.number_of_col, type(st.session_state.number_of_col))
if st.session_state.number_of_col == -1:
st.session_state.selectbox_instance = "Overview"
else:
st.session_state.selectbox_instance = name_of_columns[st.session_state.number_of_col]
number_of_col = container_for_nav.number_input(min_value=-1, step=1, max_value=len(instances_to_use) - 1, on_change=sync_from_number, label=f"Select instance by index (up to **{len(instances_to_use) - 1}**)", key="number_of_col")
selectbox_instance = container_for_nav.selectbox("Select instance by ID", ["Overview"] + name_of_columns, on_change=sync_from_drop, key="selectbox_instance")
st.divider()
# make pie plot showing how many relevant docs there are per query histogram
st.header("Relevant Docs Per Query")
plotly_chart = create_histogram_relevant_docs(relevant_df)
st.plotly_chart(plotly_chart)
st.divider()
# now show the number with relevant docs less than `n_relevant_docs`
st.header("Relevant Docs Less Than {}:".format(n_relevant_docs))
st.subheader(f'{relevant_df[relevant_df["relevant_docs"] < n_relevant_docs].shape[0]} Queries')
st.markdown(",".join(relevant_df[relevant_df["relevant_docs"] < n_relevant_docs].qid.tolist()))
with col2:
# get instance number
inst_index = number_of_col
if inst_index >= 0:
inst_num = instances_to_use[inst_index]
st.markdown("<h1 style='text-align: center; color: black;text-decoration: underline;'>Editor</h1>", unsafe_allow_html=True)
container = st.container()
container.divider()
container.subheader(f"Query")
query_text = queries[str(inst_num)].strip()
query_input = container.text_area(f"QID: {inst_num}", query_text)
container.divider()
## Documents
# relevant
relevant_docs = list(qrels[str(inst_num)].keys())[:n_relevant_docs]
doc_texts = [(doc_id, corpus[doc_id]["title"] if "title" in corpus[doc_id] else "", corpus[doc_id]["text"]) for doc_id in relevant_docs]
if word_suggestions_off:
splitting_words = []
else:
splitting_words = find_dividing_words([item[1] + " " + item[2] for item in doc_texts])
# make a selectbox of these splitting words (allow multiple)
container.subheader("Splitting Words")
container.text("Select words that are relevant to the query")
splitting_word_select = container.multiselect("Splitting Words", splitting_words, key="splitting_words")
container.divider()
current_checkboxes = []
total_changed = 0
highlighted_texts = []
highlighted_titles = []
for (docid, title, text) in tqdm.tqdm(doc_texts):
if not len(splitting_word_select) or highlighting_off:
highlighted_texts.append(text)
highlighted_titles.append(title)
continue
highlighted_text, changed_text = highlight_text(text, splitting_word_select)
highlighted_title, changed_title = highlight_text(title, splitting_word_select)
highlighted_titles.append(highlighted_title)
highlighted_texts.append(highlighted_text)
total_changed += int(int(changed_text) or int(changed_title))
container.subheader(f"Relevant Documents ({len(list(qrels[str(inst_num)].keys()))})")
container.subheader(f"Total have these words: {total_changed}")
container.divider()
for i, (docid, title, text) in enumerate(doc_texts):
container.markdown(f"## {docid}: relevance: {qrels[str(inst_num)][docid]}")
container.markdown(f"#### {highlighted_titles[i]}", True)
container.markdown(f"\n{highlighted_texts[i]}", True)
current_checkboxes.append((docid, container.checkbox(f'{docid} is Non-Relevant', key=docid)))
container.divider()
if st.checkbox("Download data as CSV"):
st.download_button(
label="Download data as CSV",
data=get_current_data(),
file_name=f'annotation_query_{inst_num}.csv',
mime='text/csv',
)
# none checked
elif inst_index < 0:
st.title("Overview")
else:
st.warning("Please choose a dataset and upload a run file. If you chose \"custom\" be sure that you uploaded all files (queries, corpus, qrels)")