Spaces:
Sleeping
Sleeping
import streamlit as st | |
import os | |
import pathlib | |
import beir | |
from beir import util | |
from beir.datasets.data_loader import GenericDataLoader | |
import pytrec_eval | |
import pandas as pd | |
from collections import defaultdict | |
import json | |
import copy | |
def load_jsonl(f): | |
did2text = defaultdict(list) | |
sub_did2text = {} | |
for idx, line in enumerate(f): | |
inst = json.loads(line) | |
if "question" in inst: | |
docid = inst["metadata"][0]["passage_id"] if "doc_id" not in inst else inst["doc_id"] | |
did2text[docid].append(inst["question"]) | |
elif "text" in inst: | |
docid = inst["doc_id"] if "doc_id" in inst else inst["did"] | |
did2text[docid].append(inst["text"]) | |
sub_did2text[inst["did"]] = inst["text"] | |
elif "query" in inst: | |
docid = inst["doc_id"] if "doc_id" in inst else inst["did"] | |
did2text[docid].append(inst["query"]) | |
else: | |
breakpoint() | |
raise NotImplementedError("Need to handle this case") | |
return did2text, sub_did2text | |
def get_beir(dataset: str): | |
url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset) | |
out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "datasets") | |
data_path = util.download_and_unzip(url, out_dir) | |
return GenericDataLoader(data_folder=data_path).load(split="test") | |
def load_run(f_run): | |
run = pytrec_eval.parse_run(copy.deepcopy(f_run)) | |
# convert bytes to strings for keys | |
new_run = defaultdict(dict) | |
for key, sub_dict in run.items(): | |
new_run[key.decode("utf-8")] = {k.decode("utf-8"): v for k, v in sub_dict.items()} | |
run_pandas = pd.read_csv(f_run, header=None, index_col=None, sep="\t") | |
run_pandas.columns = ["qid", "generic", "doc_id", "rank", "score", "model"] | |
run_pandas.doc_id = run_pandas.doc_id.astype(str) | |
run_pandas.qid = run_pandas.qid.astype(str) | |
run_pandas["rank"] = run_pandas["rank"].astype(int) | |
run_pandas.score = run_pandas.score.astype(float) | |
# if run_1_alt is not None: | |
# run_1_alt, run_1_alt_sub = load_jsonl(run_1_alt) | |
return new_run, run_pandas | |
with st.sidebar: | |
dataset_name = st.selectbox("Select a dataset in BEIR", ("scifact", "scidocs","trec-covid", "fever", "fiqa", "nfcorpus", "msmarco", "bioasq", "nq", "hotpotqa", "signal1m", "trec-news", "robust04", "arguana", "quora", "climate-fever", "dbpedia-entity", "webis-touche2020", "cqadupstack")) | |
metric_name = st.selectbox("Select a metric", ("recall_10", "recall_5")) | |
# sliderbar of how many Top N to choose | |
top_n = st.slider("Top N", 1, 100, 3) | |
x = st.header('Upload a run file') | |
run1_file = st.file_uploader("Choose a file", key="run1") | |
y = st.header("Upload a second run file") | |
run2_file = st.file_uploader("Choose a file", key="run2") | |
incorrect_only = st.checkbox("Show only incorrect instances", value=False) | |
one_better_than_two = st.checkbox("Show only instances where run 1 is better than run 2", value=False) | |
two_better_than_one = st.checkbox("Show only instances where run 2 is better than run 1", value=False) | |
col1, col2 = st.columns([1, 2], gap="medium") | |
incorrect = 0 | |
is_better_run1_count = 0 | |
is_better_run2_count = 0 | |
checkboxes = None | |
with col1: | |
st.title("Instances") | |
if run1_file is not None: | |
print("Running....") | |
corpus, queries, qrels = get_beir(dataset_name) | |
evaluator = pytrec_eval.RelevanceEvaluator( | |
qrels, pytrec_eval.supported_measures) | |
if run1_file is not None: | |
run1, run1_pandas = load_run(run1_file) | |
results1 = evaluator.evaluate(run1) # dict of instance then metrics then values | |
if run2_file is not None: | |
run2, run2_pandas = load_run(run2_file) | |
results2 = evaluator.evaluate(run2) | |
name_of_columns = ["Overview"] + sorted([str(item) for item in set(run1_pandas.qid.tolist())]) | |
checkboxes = [("Overview", st.checkbox("Overview", key=f"0overview"))] | |
st.divider() | |
for idx, item in enumerate(name_of_columns): | |
is_overview = item == "Overview" | |
if is_overview: | |
continue | |
is_incorrect = False | |
is_better_run1 = False | |
is_better_run2 = False | |
run1_score = results1[str(item)][metric_name] if not is_overview else 1 | |
if run2_file is not None: | |
run2_score = results2[str(item)][metric_name] if not is_overview else 1 | |
if not is_overview and run1_score == 0 or run2_score == 0: | |
incorrect += 1 | |
is_incorrect = True | |
if not is_overview and run1_score > run2_score: | |
is_better_run1_count += 1 | |
is_better_run1 = True | |
elif not is_overview and run2_score > run1_score: | |
is_better_run2_count += 1 | |
is_better_run2 = True | |
if not incorrect_only or is_incorrect: | |
if not one_better_than_two or is_better_run1: | |
if not two_better_than_one or is_better_run2: | |
check = st.checkbox(str(item), key=f"{idx}check") | |
st.divider() | |
checkboxes.append((item, check)) | |
else: | |
if not is_overview and run1_score == 0: | |
incorrect += 1 | |
is_incorrect = True | |
if not incorrect_only or is_incorrect: | |
check = st.checkbox(str(item), key=f"{idx}check") | |
st.divider() | |
checkboxes.append((item, check)) | |
with col2: | |
if checkboxes is not None: | |
st.title(f"Information ({len(checkboxes) - 1 if checkboxes else 0}/{len(name_of_columns) - 1})") | |
else: | |
st.title(f"Information") | |
### Only one run file | |
if run1_file is not None and run2_file is None: | |
for check_idx, (inst_num, checkbox) in enumerate(checkboxes): | |
if checkbox: | |
if inst_num == "Overview": | |
st.header("Overview") | |
st.markdown("TODO: Add overview") | |
else: | |
st.header(f"Instance Number: {inst_num}") | |
st.subheader(f"Query") | |
query_text = queries[str(inst_num)] | |
st.markdown(query_text) | |
st.divider() | |
## Documents | |
# relevant | |
relevant_docs = list(qrels[str(inst_num)].keys()) | |
doc_texts = [(doc_id, corpus[doc_id]["title"], corpus[doc_id]["text"]) for doc_id in relevant_docs] | |
st.subheader("Relevant Documents") | |
for (docid, title, text) in doc_texts: | |
st.text_area(f"{docid}: {title}", text) | |
# top ranked | |
pred_doc = run1_pandas[run1_pandas.doc_id.isin(relevant_docs)] | |
rank_pred = pred_doc[pred_doc.qid == str(inst_num)]["rank"].tolist() | |
st.subheader("Ranked of Documents") | |
st.markdown(f"Rank: {rank_pred}") | |
st.divider() | |
if st.checkbox('Show top ranked documents'): | |
st.subheader("Top N Ranked Documents") | |
run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)][:top_n] | |
run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()] | |
for d_idx, doc in enumerate(run1_top_n_docs): | |
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: {doc['title']}", doc["text"]) | |
st.divider() | |
st.subheader("Score") | |
st.markdown(f"{results1[str(inst_num)][metric_name]}") | |
break | |
## Both run files available | |
elif run1_file is not None and run2_file is not None: | |
for check_idx, (inst_num, checkbox) in enumerate(checkboxes): | |
if checkbox: | |
if inst_num == "Overview": | |
st.header("Overview") | |
st.markdown("TODO: Add overview") | |
else: | |
st.header(f"Instance Number: {inst_num}") | |
st.subheader(f"Query") | |
query_text = queries[str(inst_num)] | |
st.markdown(query_text) | |
st.divider() | |
## Documents | |
# relevant | |
relevant_docs = list(qrels[str(inst_num)].keys()) | |
doc_texts = [(doc_id, corpus[doc_id]["title"], corpus[doc_id]["text"]) for doc_id in relevant_docs] | |
st.subheader("Relevant Documents") | |
for (docid, title, text) in doc_texts: | |
st.text_area(f"{docid}: {title}", text) | |
# top ranked | |
pred_doc1 = run1_pandas[run1_pandas.doc_id.isin(relevant_docs)] | |
rank_pred1 = pred_doc1[pred_doc1.qid == str(inst_num)]["rank"].tolist() | |
pred_doc2 = run2_pandas[run2_pandas.doc_id.isin(relevant_docs)] | |
rank_pred2 = pred_doc2[pred_doc2.qid == str(inst_num)]["rank"].tolist() | |
st.subheader("Ranked of Documents") | |
st.markdown(f"Run 1 Rank: {rank_pred1}") | |
st.markdown(f"Run 2 Rank: {rank_pred2}") | |
st.divider() | |
if st.checkbox('Show top ranked documents for Run 1'): | |
st.subheader("Top N Ranked Documents") | |
run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)][:top_n] | |
run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()] | |
for d_idx, doc in enumerate(run1_top_n_docs): | |
st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: {doc['title']}", doc["text"]) | |
if st.checkbox('Show top ranked documents for Run 2'): | |
st.subheader("Top N Ranked Documents") | |
run2_top_n = run2_pandas[run2_pandas.qid == str(inst_num)][:top_n] | |
run2_top_n_docs = [corpus[str(doc_id)] for doc_id in run2_top_n.doc_id.tolist()] | |
for d_idx, doc in enumerate(run2_top_n_docs): | |
st.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: {doc['title']}", doc["text"]) | |
st.divider() | |
st.subheader("Scores") | |
st.markdown(f"Run 1: {results1[str(inst_num)][metric_name]}") | |
st.markdown(f"Run 2: {results2[str(inst_num)][metric_name]}") | |
break | |