Orion Weller commited on
Commit
68f913d
·
1 Parent(s): d2c1af1

basic working

Browse files
Files changed (2) hide show
  1. app.py +244 -2
  2. requirements.txt +4 -0
app.py CHANGED
@@ -1,4 +1,246 @@
1
  import streamlit as st
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
 
3
- x = st.slider('Select a value')
4
- st.write(x, 'squared is', x * x)
 
1
  import streamlit as st
2
+ import os
3
+ import pathlib
4
+ import beir
5
+ from beir import util
6
+ from beir.datasets.data_loader import GenericDataLoader
7
+ import pytrec_eval
8
+ import pandas as pd
9
+ from collections import defaultdict
10
+ import json
11
+ import copy
12
+
13
+ def load_jsonl(f):
14
+ did2text = defaultdict(list)
15
+ sub_did2text = {}
16
+
17
+ for idx, line in enumerate(f):
18
+ inst = json.loads(line)
19
+ if "question" in inst:
20
+ docid = inst["metadata"][0]["passage_id"] if "doc_id" not in inst else inst["doc_id"]
21
+ did2text[docid].append(inst["question"])
22
+ elif "text" in inst:
23
+ docid = inst["doc_id"] if "doc_id" in inst else inst["did"]
24
+ did2text[docid].append(inst["text"])
25
+ sub_did2text[inst["did"]] = inst["text"]
26
+ elif "query" in inst:
27
+ docid = inst["doc_id"] if "doc_id" in inst else inst["did"]
28
+ did2text[docid].append(inst["query"])
29
+ else:
30
+ breakpoint()
31
+ raise NotImplementedError("Need to handle this case")
32
+
33
+ return did2text, sub_did2text
34
+
35
+
36
+
37
+ def get_beir(dataset_name: str):
38
+ dataset = "scifact"
39
+ url = "https://public.ukp.informatik.tu-darmstadt.de/thakur/BEIR/datasets/{}.zip".format(dataset)
40
+ out_dir = os.path.join(pathlib.Path(__file__).parent.absolute(), "datasets")
41
+ data_path = util.download_and_unzip(url, out_dir)
42
+ return GenericDataLoader(data_folder=data_path).load(split="test")
43
+
44
+ def load_run(f_run):
45
+ run = pytrec_eval.parse_run(copy.deepcopy(f_run))
46
+ # convert bytes to strings for keys
47
+ new_run = defaultdict(dict)
48
+ for key, sub_dict in run.items():
49
+ new_run[key.decode("utf-8")] = {k.decode("utf-8"): v for k, v in sub_dict.items()}
50
+
51
+ run_pandas = pd.read_csv(f_run, header=None, index_col=None, sep="\t")
52
+ run_pandas.columns = ["qid", "generic", "doc_id", "rank", "score", "model"]
53
+ run_pandas.doc_id = run_pandas.doc_id.astype(str)
54
+ run_pandas.qid = run_pandas.qid.astype(str)
55
+ run_pandas["rank"] = run_pandas["rank"].astype(int)
56
+ run_pandas.score = run_pandas.score.astype(float)
57
+ # if run_1_alt is not None:
58
+ # run_1_alt, run_1_alt_sub = load_jsonl(run_1_alt)
59
+ return new_run, run_pandas
60
+
61
+
62
+ with st.sidebar:
63
+ dataset_name = st.selectbox("Select a dataset in BEIR", ("scifact", "trec-covid", "fever"))
64
+ metric_name = st.selectbox("Select a metric", ("recall_5", "recall_10"))
65
+ # sliderbar of how many Top N to choose
66
+ top_n = st.slider("Top N", 1, 100, 3)
67
+ x = st.header('Upload a run file')
68
+ run1_file = st.file_uploader("Choose a file", key="run1")
69
+ y = st.header("Upload a second run file")
70
+ run2_file = st.file_uploader("Choose a file", key="run2")
71
+ incorrect_only = st.checkbox("Show only incorrect instances", value=False)
72
+ one_better_than_two = st.checkbox("Show only instances where run 1 is better than run 2", value=False)
73
+ two_better_than_one = st.checkbox("Show only instances where run 2 is better than run 1", value=False)
74
+
75
+
76
+
77
+
78
+
79
+ corpus, queries, qrels = get_beir(dataset_name)
80
+
81
+ evaluator = pytrec_eval.RelevanceEvaluator(
82
+ qrels, pytrec_eval.supported_measures)
83
+
84
+ if run1_file is not None:
85
+ run1, run1_pandas = load_run(run1_file)
86
+ results1 = evaluator.evaluate(run1) # dict of instance then metrics then values
87
+
88
+ if run2_file is not None:
89
+ run2, run2_pandas = load_run(run2_file)
90
+ results2 = evaluator.evaluate(run2)
91
+
92
+
93
+ col1, col2 = st.columns([1, 2], gap="medium")
94
+
95
+ incorrect = 0
96
+ is_better_run1_count = 0
97
+ is_better_run2_count = 0
98
+ with col1:
99
+ st.title("Instances")
100
+ if run1_file is not None:
101
+ name_of_columns = ["Overview"] + sorted([int(item) for item in set(run1_pandas.qid.tolist())])
102
+ checkboxes = [("Overview", st.checkbox("Overview", key=f"0overview"))]
103
+ st.divider()
104
+ for idx in range(len(name_of_columns)):
105
+ if not idx:
106
+ continue
107
+ is_incorrect = False
108
+ is_better_run1 = False
109
+ is_better_run2 = False
110
+
111
+ run1_score = results1[str(name_of_columns[idx])][metric_name] if idx else 1
112
+ if run2_file is not None:
113
+ run2_score = results2[str(name_of_columns[idx])][metric_name] if idx else 1
114
+
115
+ if idx and run1_score == 0 or run2_score == 0:
116
+ incorrect += 1
117
+ is_incorrect = True
118
+
119
+ if idx and run1_score > run2_score:
120
+ is_better_run1_count += 1
121
+ is_better_run1 = True
122
+ elif idx and run2_score > run1_score:
123
+ is_better_run2_count += 1
124
+ is_better_run2 = True
125
+
126
+ if not incorrect_only or is_incorrect:
127
+ if not one_better_than_two or is_better_run1:
128
+ if not two_better_than_one or is_better_run2:
129
+ check = st.checkbox(str(name_of_columns[idx]), key=f"{idx}check")
130
+ st.divider()
131
+ checkboxes.append((name_of_columns[idx], check))
132
+ else:
133
+ if idx and run1_score == 0:
134
+ incorrect += 1
135
+ is_incorrect = True
136
+
137
+ if not incorrect_only or is_incorrect:
138
+ check = st.checkbox(str(name_of_columns[idx]), key=f"{idx}check")
139
+ st.divider()
140
+ checkboxes.append((name_of_columns[idx], check))
141
+
142
+
143
+ with col2:
144
+ st.title(f"Information ({len(checkboxes) - 1}/{len(name_of_columns) - 1})")
145
+ ### Only one run file
146
+ if run1_file is not None and run2_file is None:
147
+ for check_idx, (inst_num, checkbox) in enumerate(checkboxes):
148
+ if checkbox:
149
+ if inst_num == "Overview":
150
+ st.header("Overview")
151
+ st.markdown("TODO: Add overview")
152
+ else:
153
+ st.header(f"Instance Number: {inst_num}")
154
+
155
+ st.subheader(f"Query")
156
+ query_text = queries[str(inst_num)]
157
+ st.markdown(query_text)
158
+ st.divider()
159
+
160
+ ## Documents
161
+ # relevant
162
+ relevant_docs = list(qrels[str(inst_num)].keys())
163
+ doc_texts = [(doc_id, corpus[doc_id]["title"], corpus[doc_id]["text"]) for doc_id in relevant_docs]
164
+ st.subheader("Relevant Documents")
165
+ for (docid, title, text) in doc_texts:
166
+ st.text_area(f"{docid}: {title}", text)
167
+
168
+ # top ranked
169
+ pred_doc = run1_pandas[run1_pandas.doc_id.isin(relevant_docs)]
170
+ rank_pred = pred_doc[pred_doc.qid == str(inst_num)]["rank"].tolist()
171
+ st.subheader("Ranked of Documents")
172
+ st.markdown(f"Rank: {rank_pred}")
173
+
174
+ st.divider()
175
+
176
+ if st.checkbox('Show top ranked documents'):
177
+ st.subheader("Top N Ranked Documents")
178
+ run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)][:top_n]
179
+ run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
180
+ for d_idx, doc in enumerate(run1_top_n_docs):
181
+ st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: {doc['title']}", doc["text"])
182
+ st.divider()
183
+
184
+
185
+ st.subheader("Score")
186
+ st.markdown(f"{results1[str(inst_num)][metric_name]}")
187
+ break
188
+
189
+ ## Both run files available
190
+ elif run1_file is not None and run2_file is not None:
191
+ for check_idx, (inst_num, checkbox) in enumerate(checkboxes):
192
+ if checkbox:
193
+ if inst_num == "Overview":
194
+ st.header("Overview")
195
+ st.markdown("TODO: Add overview")
196
+ else:
197
+ st.header(f"Instance Number: {inst_num}")
198
+
199
+ st.subheader(f"Query")
200
+ query_text = queries[str(inst_num)]
201
+ st.markdown(query_text)
202
+ st.divider()
203
+
204
+ ## Documents
205
+ # relevant
206
+ relevant_docs = list(qrels[str(inst_num)].keys())
207
+ doc_texts = [(doc_id, corpus[doc_id]["title"], corpus[doc_id]["text"]) for doc_id in relevant_docs]
208
+ st.subheader("Relevant Documents")
209
+ for (docid, title, text) in doc_texts:
210
+ st.text_area(f"{docid}: {title}", text)
211
+
212
+ # top ranked
213
+ pred_doc1 = run1_pandas[run1_pandas.doc_id.isin(relevant_docs)]
214
+ rank_pred1 = pred_doc1[pred_doc1.qid == str(inst_num)]["rank"].tolist()
215
+ pred_doc2 = run2_pandas[run2_pandas.doc_id.isin(relevant_docs)]
216
+ rank_pred2 = pred_doc2[pred_doc2.qid == str(inst_num)]["rank"].tolist()
217
+ st.subheader("Ranked of Documents")
218
+ st.markdown(f"Run 1 Rank: {rank_pred1}")
219
+ st.markdown(f"Run 2 Rank: {rank_pred2}")
220
+
221
+
222
+ st.divider()
223
+
224
+ if st.checkbox('Show top ranked documents for Run 1'):
225
+ st.subheader("Top N Ranked Documents")
226
+ run1_top_n = run1_pandas[run1_pandas.qid == str(inst_num)][:top_n]
227
+ run1_top_n_docs = [corpus[str(doc_id)] for doc_id in run1_top_n.doc_id.tolist()]
228
+ for d_idx, doc in enumerate(run1_top_n_docs):
229
+ st.text_area(f"{run1_top_n['doc_id'].iloc[d_idx]}: {doc['title']}", doc["text"])
230
+
231
+ if st.checkbox('Show top ranked documents for Run 2'):
232
+ st.subheader("Top N Ranked Documents")
233
+ run2_top_n = run2_pandas[run2_pandas.qid == str(inst_num)][:top_n]
234
+ run2_top_n_docs = [corpus[str(doc_id)] for doc_id in run2_top_n.doc_id.tolist()]
235
+ for d_idx, doc in enumerate(run2_top_n_docs):
236
+ st.text_area(f"{run2_top_n['doc_id'].iloc[d_idx]}: {doc['title']}", doc["text"])
237
+
238
+ st.divider()
239
+
240
+
241
+ st.subheader("Scores")
242
+ st.markdown(f"Run 1: {results1[str(inst_num)][metric_name]}")
243
+ st.markdown(f"Run 2: {results2[str(inst_num)][metric_name]}")
244
+
245
+ break
246
 
 
 
requirements.txt ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ beir
2
+ pandas
3
+ pytrec_eval
4
+ streamlit