Spaces:
Sleeping
Sleeping
orionweller
commited on
Commit
•
8bfed60
1
Parent(s):
3c28932
move to avoid import
Browse files- app.py +67 -1
- find_splitting_words.py +0 -103
app.py
CHANGED
@@ -9,8 +9,74 @@ import re
|
|
9 |
import tqdm
|
10 |
import plotly.express as px
|
11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
12 |
from dataset_loading import load_local_qrels, load_local_corpus, load_local_queries
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
|
16 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
|
|
9 |
import tqdm
|
10 |
import plotly.express as px
|
11 |
|
12 |
+
|
13 |
+
import pandas as pd
|
14 |
+
from nltk.corpus import stopwords
|
15 |
+
from nltk.stem import PorterStemmer
|
16 |
+
from nltk.tokenize import word_tokenize
|
17 |
+
from collections import Counter
|
18 |
+
import string
|
19 |
+
import os
|
20 |
+
import streamlit as st
|
21 |
+
|
22 |
+
# Ensure you've downloaded the set of stop words the first time you run this
|
23 |
+
import nltk
|
24 |
+
# only download if they don't exist
|
25 |
+
if not os.path.exists(os.path.join(nltk.data.find('corpora'), 'stopwords')):
|
26 |
+
nltk.download('punkt')
|
27 |
+
nltk.download('stopwords')
|
28 |
+
|
29 |
+
|
30 |
from dataset_loading import load_local_qrels, load_local_corpus, load_local_queries
|
31 |
+
|
32 |
+
|
33 |
+
def preprocess_document(doc):
|
34 |
+
"""
|
35 |
+
Tokenizes, removes punctuation, stopwords, and stems words in a single document.
|
36 |
+
"""
|
37 |
+
# Lowercase
|
38 |
+
doc = doc.lower()
|
39 |
+
# Remove punctuation
|
40 |
+
doc = doc.translate(str.maketrans('', '', string.punctuation))
|
41 |
+
# Tokenize
|
42 |
+
tokens = word_tokenize(doc)
|
43 |
+
# Remove stop words
|
44 |
+
stop_words = set(stopwords.words('english'))
|
45 |
+
filtered_tokens = [word for word in tokens if word not in stop_words]
|
46 |
+
# Stemming
|
47 |
+
stemmer = PorterStemmer()
|
48 |
+
stemmed_tokens = [stemmer.stem(word) for word in filtered_tokens]
|
49 |
+
return stemmed_tokens
|
50 |
+
|
51 |
+
@st.cache_data
|
52 |
+
def find_dividing_words(documents):
|
53 |
+
"""
|
54 |
+
Identifies candidate words that might split the set of documents into two groups.
|
55 |
+
"""
|
56 |
+
all_words = []
|
57 |
+
per_doc_word_counts = []
|
58 |
+
|
59 |
+
i = 0
|
60 |
+
for doc in documents:
|
61 |
+
print(i)
|
62 |
+
preprocessed_doc = preprocess_document(doc)
|
63 |
+
all_words.extend(preprocessed_doc)
|
64 |
+
per_doc_word_counts.append(Counter(preprocessed_doc))
|
65 |
+
i += 1
|
66 |
+
|
67 |
+
# Overall word frequency
|
68 |
+
overall_word_counts = Counter(all_words)
|
69 |
+
|
70 |
+
# Find words that appear in roughly half the documents
|
71 |
+
num_docs = len(documents)
|
72 |
+
candidate_words = []
|
73 |
+
for word, count in overall_word_counts.items():
|
74 |
+
doc_frequency = sum(1 for doc_count in per_doc_word_counts if doc_count[word] > 0)
|
75 |
+
if 0.35 * num_docs <= doc_frequency <= 0.75 * num_docs:
|
76 |
+
candidate_words.append(word)
|
77 |
+
print("Done with dividing words")
|
78 |
+
|
79 |
+
return candidate_words
|
80 |
|
81 |
|
82 |
os.environ["PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION"] = "python"
|
find_splitting_words.py
DELETED
@@ -1,103 +0,0 @@
|
|
1 |
-
import argparse
|
2 |
-
import pandas as pd
|
3 |
-
from nltk.corpus import stopwords
|
4 |
-
from nltk.stem import PorterStemmer
|
5 |
-
from nltk.tokenize import word_tokenize
|
6 |
-
from collections import Counter
|
7 |
-
import string
|
8 |
-
import os
|
9 |
-
import streamlit as st
|
10 |
-
|
11 |
-
# Ensure you've downloaded the set of stop words the first time you run this
|
12 |
-
import nltk
|
13 |
-
# only download if they don't exist
|
14 |
-
if not os.path.exists(os.path.join(nltk.data.find('corpora'), 'stopwords')):
|
15 |
-
nltk.download('punkt')
|
16 |
-
nltk.download('stopwords')
|
17 |
-
|
18 |
-
def preprocess_document(doc):
|
19 |
-
"""
|
20 |
-
Tokenizes, removes punctuation, stopwords, and stems words in a single document.
|
21 |
-
"""
|
22 |
-
# Lowercase
|
23 |
-
doc = doc.lower()
|
24 |
-
# Remove punctuation
|
25 |
-
doc = doc.translate(str.maketrans('', '', string.punctuation))
|
26 |
-
# Tokenize
|
27 |
-
tokens = word_tokenize(doc)
|
28 |
-
# Remove stop words
|
29 |
-
stop_words = set(stopwords.words('english'))
|
30 |
-
filtered_tokens = [word for word in tokens if word not in stop_words]
|
31 |
-
# Stemming
|
32 |
-
stemmer = PorterStemmer()
|
33 |
-
stemmed_tokens = [stemmer.stem(word) for word in filtered_tokens]
|
34 |
-
return stemmed_tokens
|
35 |
-
|
36 |
-
@st.cache_data
|
37 |
-
def find_dividing_words(documents):
|
38 |
-
"""
|
39 |
-
Identifies candidate words that might split the set of documents into two groups.
|
40 |
-
"""
|
41 |
-
all_words = []
|
42 |
-
per_doc_word_counts = []
|
43 |
-
|
44 |
-
i = 0
|
45 |
-
for doc in documents:
|
46 |
-
print(i)
|
47 |
-
preprocessed_doc = preprocess_document(doc)
|
48 |
-
all_words.extend(preprocessed_doc)
|
49 |
-
per_doc_word_counts.append(Counter(preprocessed_doc))
|
50 |
-
i += 1
|
51 |
-
|
52 |
-
# Overall word frequency
|
53 |
-
overall_word_counts = Counter(all_words)
|
54 |
-
|
55 |
-
# Find words that appear in roughly half the documents
|
56 |
-
num_docs = len(documents)
|
57 |
-
candidate_words = []
|
58 |
-
for word, count in overall_word_counts.items():
|
59 |
-
doc_frequency = sum(1 for doc_count in per_doc_word_counts if doc_count[word] > 0)
|
60 |
-
if 0.35 * num_docs <= doc_frequency <= 0.75 * num_docs:
|
61 |
-
candidate_words.append(word)
|
62 |
-
print("Done with dividing words")
|
63 |
-
|
64 |
-
return candidate_words
|
65 |
-
|
66 |
-
|
67 |
-
def make_contents(doc):
|
68 |
-
"""
|
69 |
-
Returns the contents of a document as a single string.
|
70 |
-
"""
|
71 |
-
if "title" in doc and "contents" in doc:
|
72 |
-
return doc["title"] + " " + doc["contents"]
|
73 |
-
if "headline" in doc and "text" in doc:
|
74 |
-
return doc["headline"] + " " + doc["text"]
|
75 |
-
if "title" in doc and "text" in doc:
|
76 |
-
return doc["title"] + " " + doc["text"]
|
77 |
-
if "contents" in doc:
|
78 |
-
return doc["contents"]
|
79 |
-
if "text" in doc:
|
80 |
-
return doc["text"]
|
81 |
-
|
82 |
-
|
83 |
-
def main(args):
|
84 |
-
# read in the qrels and docs file from the `args.dataset` directory for the `.relevant_only` files
|
85 |
-
base_dir = os.path.join("data", args.dataset)
|
86 |
-
qrels = pd.read_csv(os.path.join(base_dir, "qrels.relevant_only.trec"), sep="\t", header=None, names=["qid", "docid", "rel"])
|
87 |
-
docs = pd.read_json(os.path.join(base_dir, "docs.relevant_only.jsonl"), lines=True)
|
88 |
-
|
89 |
-
for qid in qrels.groupby("qid").groups.keys():
|
90 |
-
# get the relevant documents for the current query
|
91 |
-
relevant_docids = qrels[qrels["qid"] == qid]["docid"].tolist()
|
92 |
-
# get the text for the relevant documents
|
93 |
-
relevant_docs_text = docs[docs["doc_id"].isin(relevant_docids)].apply(lambda x: make_contents(x), axis=1).tolist()
|
94 |
-
splitting_words = find_dividing_words(relevant_docs_text)
|
95 |
-
|
96 |
-
breakpoint()
|
97 |
-
|
98 |
-
|
99 |
-
if __name__ == "__main__":
|
100 |
-
parser = argparse.ArgumentParser(description='Find words that might split the set of documents into two groups.')
|
101 |
-
parser.add_argument('dataset', type=str, help='The dataset to use (e.g. "robust04")')
|
102 |
-
args = parser.parse_args()
|
103 |
-
main(args)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|