Spaces:
Sleeping
Sleeping
File size: 12,204 Bytes
a907241 b7e679e a907241 6b90dc3 a907241 b7e679e 8bedcc4 d89580e 71bf446 1047f73 a907241 6b90dc3 a907241 b7e679e a907241 3e7db0b b7e679e a907241 b7e679e c74038e 53b3bb9 b7e679e 079558d b7e679e 7e1704f 8bedcc4 7e1704f a667370 b7e679e a667370 b7e679e a667370 b7e679e a907241 a667370 8997990 a667370 a2fb673 a667370 a907241 c837e28 a05d59f c837e28 d89580e 8997990 079558d 7743187 53b3bb9 7743187 53b3bb9 7743187 53b3bb9 a907241 c74038e b7e679e a907241 b7e679e f7300ce b7e679e a907241 b7e679e c74038e b7e679e a907241 7743187 b7e679e e61608e b7e679e a907241 b7e679e 5dfae9b e7a2175 079558d b7e679e 9121427 b7e679e c74038e b7e679e a667370 e7a2175 a667370 e61608e e7a2175 b7e679e a907241 0f7ca6c 05ff7af c74038e 0f7ca6c e61608e e7a2175 b7e679e a907241 e7a2175 d231d5c a667370 b7e679e a907241 a667370 079558d a667370 a907241 b7e679e a907241 b7e679e f448409 d231d5c 9e3d5d4 d89580e dc7edc7 a907241 c837e28 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 |
import gradio as gr
import pickle
import numpy as np
import glob
import tqdm
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, set_seed
from peft import PeftModel
import logging
import os
import json
import spaces
import ir_datasets
import pytrec_eval
from huggingface_hub import login
import transformers
import peft
import faiss
import sys
from collections import defaultdict
set_seed(42)
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Authenticate with HF_TOKEN
login(token=os.environ['HF_TOKEN'])
# Global variables
CUR_MODEL = "Samaya-AI/Promptriever-Llama2-v1"
BASE_MODEL = "meta-llama/Llama-2-7b-hf"
tokenizer = None
model = None
retrievers = {}
corpus_lookups = {}
queries = {}
q_lookups = {}
qrels = {}
query2qid = {}
datasets = ["scifact"]
current_dataset = "scifact"
faiss_index = None
def log_system_info():
logger.info("System Information:")
logger.info(f"Python version: {sys.version}")
logger.info("\nPackage Versions:")
logger.info(f"torch: {torch.__version__}")
logger.info(f"transformers: {transformers.__version__}")
logger.info(f"peft: {peft.__version__}")
logger.info(f"faiss: {faiss.__version__}")
logger.info(f"gradio: {gr.__version__}")
logger.info(f"ir_datasets: {ir_datasets.__version__}")
if torch.cuda.is_available():
logger.info(f"\nCUDA Information:")
logger.info(f"CUDA available: Yes")
logger.info(f"CUDA version: {torch.version.cuda}")
logger.info(f"cuDNN version: {torch.backends.cudnn.version()}")
logger.info(f"Number of GPUs: {torch.cuda.device_count()}")
for i in range(torch.cuda.device_count()):
logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}")
else:
logger.info("\nCUDA Information:")
logger.info("CUDA available: No")
log_system_info()
def pool(last_hidden_states, attention_mask, pool_type="last"):
last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)
if pool_type == "last":
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
if left_padding:
emb = last_hidden[:, -1]
else:
sequence_lengths = attention_mask.sum(dim=1) - 1
batch_size = last_hidden.shape[0]
emb = last_hidden[torch.arange(batch_size, device=last_hidden.device), sequence_lengths]
else:
raise ValueError(f"pool_type {pool_type} not supported")
return emb
def create_batch_dict(tokenizer, input_texts, always_add_eos="last", max_length=512):
batch_dict = tokenizer(
input_texts,
max_length=max_length - 1,
return_token_type_ids=False,
return_attention_mask=False,
padding=False,
truncation=True
)
if always_add_eos == "last":
batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]
return tokenizer.pad(
batch_dict,
padding=True,
pad_to_multiple_of=8,
return_attention_mask=True,
return_tensors="pt",
)
class RepLlamaModel:
def __init__(self, model_name_or_path):
self.base_model = "meta-llama/Llama-2-7b-hf"
self.tokenizer = AutoTokenizer.from_pretrained(self.base_model)
self.tokenizer.model_max_length = 2048
self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
self.tokenizer.pad_token = self.tokenizer.eos_token
self.tokenizer.padding_side = "right"
self.model = self.get_model(model_name_or_path)
self.model.config.max_length = 2048
def get_model(self, peft_model_name):
base_model = AutoModel.from_pretrained(self.base_model)
model = PeftModel.from_pretrained(base_model, peft_model_name)
model = model.merge_and_unload()
model.eval()
return model
def encode(self, texts, batch_size=48, **kwargs):
self.model = self.model.cuda()
all_embeddings = []
for i in range(0, len(texts), batch_size):
batch_texts = texts[i:i+batch_size]
batch_dict = create_batch_dict(self.tokenizer, batch_texts, always_add_eos="last")
batch_dict = {key: value.cuda() for key, value in batch_dict.items()}
with torch.cuda.amp.autocast():
with torch.no_grad():
outputs = self.model(**batch_dict)
embeddings = pool(outputs.last_hidden_state, batch_dict['attention_mask'], 'last')
embeddings = F.normalize(embeddings, p=2, dim=-1)
logger.info(f"Encoded shape: {embeddings.shape}, Norm of first embedding: {torch.norm(embeddings[0]).item()}")
all_embeddings.append(embeddings.cpu().numpy())
self.model = self.model.cpu()
return np.concatenate(all_embeddings, axis=0)
def load_corpus_embeddings(dataset_name):
corpus_path = f"{dataset_name}/corpus_emb.*.pkl"
index_files = glob.glob(corpus_path)
index_files.sort(key=lambda x: int(x.split('.')[-2]))
all_embeddings = []
corpus_lookups = []
for file in index_files:
with open(file, 'rb') as f:
embeddings, p_lookup = pickle.load(f)
all_embeddings.append(embeddings)
corpus_lookups.extend(p_lookup)
all_embeddings = np.concatenate(all_embeddings, axis=0)
logger.info(f"Loaded corpus embeddings for {dataset_name}. Shape: {all_embeddings.shape}")
return all_embeddings, corpus_lookups
def create_faiss_index(embeddings):
dimension = embeddings.shape[1]
index = faiss.IndexFlatIP(dimension)
index.add(embeddings)
logger.info(f"Created FAISS index with {index.ntotal} vectors of dimension {dimension}")
return index
def load_or_create_faiss_index(dataset_name):
embeddings, corpus_lookups = load_corpus_embeddings(dataset_name)
index = create_faiss_index(embeddings)
return index, corpus_lookups
def initialize_faiss_and_corpus(dataset_name):
global corpus_lookups
index, corpus_lookups[dataset_name] = load_or_create_faiss_index(dataset_name)
logger.info(f"Initialized FAISS index and corpus lookups for {dataset_name}")
return index
def search_queries(dataset_name, q_reps, depth=100):
global faiss_index
logger.info(f"Searching queries. Shape of q_reps: {q_reps.shape}")
# Perform the search
all_scores, all_indices = faiss_index.search(q_reps, depth)
logger.info(f"Search completed. Shape of all_scores: {all_scores.shape}, all_indices: {all_indices.shape}")
logger.info(f"Sample scores: {all_scores[0][:5]}, Sample indices: {all_indices[0][:5]}")
psg_indices = [[str(corpus_lookups[dataset_name][x]) for x in q_dd] for q_dd in all_indices]
return all_scores, np.array(psg_indices)
def load_queries(dataset_name):
global queries, q_lookups, qrels, query2qid
dataset = ir_datasets.load(f"beir/{dataset_name.lower()}" + ("/test" if dataset_name == "scifact" else ""))
queries[dataset_name] = []
query2qid[dataset_name] = defaultdict(dict)
q_lookups[dataset_name] = {}
qrels[dataset_name] = {}
for query in dataset.queries_iter():
queries[dataset_name].append(query.text)
q_lookups[dataset_name][query.query_id] = query.text
query2qid[dataset_name][query.text] = query.query_id
for qrel in dataset.qrels_iter():
if qrel.query_id not in qrels[dataset_name]:
qrels[dataset_name][qrel.query_id] = {}
qrels[dataset_name][qrel.query_id][qrel.doc_id] = qrel.relevance
logger.info(f"Loaded queries for {dataset_name}. Total queries: {len(queries[dataset_name])}")
logger.info(f"Loaded qrels for {dataset_name}. Total query IDs: {len(qrels[dataset_name])}")
def evaluate(qrels, results, k_values):
qrels = {str(k): {str(k2): v2 for k2, v2 in v.items()} for k, v in qrels.items()}
results = {str(k): {str(k2): v2 for k2, v2 in v.items()} for k, v in results.items()}
evaluator = pytrec_eval.RelevanceEvaluator(
qrels, {f"ndcg_cut.{k}" for k in k_values} | {f"recall.{k}" for k in k_values}
)
scores = evaluator.evaluate(results)
metrics = {}
for k in k_values:
ndcg_scores = [query_scores[f"ndcg_cut_{k}"] for query_scores in scores.values()]
recall_scores = [query_scores[f"recall_{k}"] for query_scores in scores.values()]
metrics[f"NDCG@{k}"] = round(np.mean(ndcg_scores), 3)
metrics[f"Recall@{k}"] = round(np.mean(recall_scores), 3)
logger.info(f"NDCG@{k}: mean={metrics[f'NDCG@{k}']}, min={min(ndcg_scores)}, max={max(ndcg_scores)}")
logger.info(f"Recall@{k}: mean={metrics[f'Recall@{k}']}, min={min(recall_scores)}, max={max(recall_scores)}")
# delete nDCG@100 and Recall@10
del metrics["NDCG@100"]
del metrics["Recall@100"]
return metrics
@spaces.GPU
def run_evaluation(dataset, postfix):
global current_dataset, queries, model, query2qid
current_dataset = dataset
input_texts = [f"query: {query.strip()} {postfix}".strip() for query in queries[current_dataset]]
logger.info(f"Number of input texts: {len(input_texts)}")
logger.info(f"Sample input text: {input_texts[0]}")
q_reps = model.encode(input_texts)
logger.info(f"Encoded query first five: {q_reps[0][:5]}")
logger.info(f"Encoded query representations shape: {q_reps.shape}")
all_scores, psg_indices = search_queries(dataset, q_reps)
results = {}
logging.info(f"Number of queries in q_lookups: {len(q_lookups[dataset])}")
logging.info("Size of all_scores: " + str(len(all_scores)))
logging.info("Size of psg_indices: " + str(len(psg_indices)))
for query, scores, doc_ids in zip(queries[current_dataset], all_scores, psg_indices):
qid = query2qid[dataset][query]
qid_str = str(qid)
results[qid_str] = {}
for doc_id, score in zip(doc_ids, scores):
doc_id_str = str(doc_id)
results[qid_str][doc_id_str] = float(score)
if not results[qid_str]: # If no results for this query
logger.warning(f"No results for query {qid_str}")
logger.info(f"Number of queries in results: {len(results)}")
logger.info(f"Sample result: {next(iter(results.items()))}")
qrels[dataset] = {str(qid): {str(doc_id): rel for doc_id, rel in rels.items()}
for qid, rels in qrels[dataset].items()}
logger.info(f"Number of results: {len(results)}")
logger.info(f"Sample result: {list(results.items())[0]}")
logger.info(f"Number of queries in qrels: {len(qrels[dataset])}")
logger.info(f"Sample qrel: {list(qrels[dataset].items())[0]}")
logger.info(f"Number of queries in results: {len(results)}")
logger.info(f"Sample result: {list(results.items())[0]}")
# Check for mismatches
qrels_keys = set(qrels[dataset].keys())
results_keys = set(results.keys())
logger.info(f"Queries in qrels but not in results: {qrels_keys - results_keys}")
logger.info(f"Queries in results but not in qrels: {results_keys - qrels_keys}")
metrics = evaluate(qrels[dataset], results, k_values=[10, 100])
return metrics
@spaces.GPU
def gradio_interface(dataset, postfix):
return run_evaluation(dataset, postfix)
if model is None:
model = RepLlamaModel(model_name_or_path=CUR_MODEL)
load_queries(current_dataset)
faiss_index = initialize_faiss_and_corpus(current_dataset)
# Create Gradio interface
iface = gr.Interface(
fn=gradio_interface,
inputs=[
gr.Dropdown(choices=datasets, label="Dataset", value="scifact"),
gr.Textbox(label="Prompt")
],
outputs=gr.JSON(label="Evaluation Results"),
title="Promptriever Demo",
description="Enter a prompt to evaluate the model's performance on SciFact. Note: it takes about **30 seconds** to evaluate.",
examples=[
["scifact", ""],
["scifact", "Think carefully about these conditions when determining relevance"]
],
cache_examples=False,
)
# Launch the interface
iface.launch(share=False)
|