File size: 12,204 Bytes
a907241
 
 
 
b7e679e
a907241
 
6b90dc3
a907241
 
 
 
 
 
b7e679e
 
8bedcc4
 
d89580e
71bf446
1047f73
a907241
6b90dc3
 
a907241
 
 
 
b7e679e
 
 
a907241
3e7db0b
b7e679e
a907241
 
b7e679e
 
 
 
 
c74038e
53b3bb9
b7e679e
079558d
b7e679e
7e1704f
 
 
 
 
 
 
 
 
8bedcc4
7e1704f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a667370
b7e679e
 
a667370
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e679e
 
 
 
 
 
 
 
a667370
 
 
 
b7e679e
 
 
 
 
 
 
a907241
a667370
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8997990
a667370
 
 
 
 
 
 
 
a2fb673
 
 
 
 
 
 
a667370
 
 
a907241
c837e28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a05d59f
c837e28
 
 
 
 
d89580e
8997990
079558d
7743187
53b3bb9
 
 
 
7743187
 
53b3bb9
7743187
53b3bb9
 
a907241
 
c74038e
b7e679e
a907241
b7e679e
f7300ce
b7e679e
 
a907241
b7e679e
 
c74038e
b7e679e
 
 
 
 
a907241
7743187
 
 
b7e679e
e61608e
 
b7e679e
 
 
 
a907241
b7e679e
 
5dfae9b
 
 
 
e7a2175
 
 
079558d
 
 
b7e679e
 
9121427
b7e679e
c74038e
b7e679e
a667370
 
e7a2175
 
 
a667370
e61608e
e7a2175
 
b7e679e
a907241
0f7ca6c
 
 
 
05ff7af
c74038e
0f7ca6c
 
 
 
 
 
 
 
 
 
 
 
e61608e
 
 
e7a2175
 
 
 
 
 
 
 
 
 
 
 
 
 
b7e679e
a907241
e7a2175
d231d5c
a667370
 
b7e679e
a907241
a667370
 
 
079558d
a667370
a907241
 
 
 
b7e679e
 
a907241
b7e679e
 
f448409
d231d5c
 
9e3d5d4
d89580e
dc7edc7
a907241
 
 
c837e28
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
import gradio as gr
import pickle
import numpy as np
import glob
import tqdm
import torch
import torch.nn.functional as F
from transformers import AutoTokenizer, AutoModel, set_seed
from peft import PeftModel
import logging
import os
import json
import spaces
import ir_datasets
import pytrec_eval
from huggingface_hub import login
import transformers
import peft
import faiss
import sys
from collections import defaultdict

set_seed(42)

# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)

# Authenticate with HF_TOKEN
login(token=os.environ['HF_TOKEN'])

# Global variables
CUR_MODEL = "Samaya-AI/Promptriever-Llama2-v1"
BASE_MODEL = "meta-llama/Llama-2-7b-hf"
tokenizer = None
model = None
retrievers = {}
corpus_lookups = {}
queries = {}
q_lookups = {}
qrels = {}
query2qid = {}
datasets = ["scifact"]
current_dataset = "scifact"
faiss_index = None

def log_system_info():
    logger.info("System Information:")
    logger.info(f"Python version: {sys.version}")
    
    logger.info("\nPackage Versions:")
    logger.info(f"torch: {torch.__version__}")
    logger.info(f"transformers: {transformers.__version__}")
    logger.info(f"peft: {peft.__version__}")
    logger.info(f"faiss: {faiss.__version__}")
    logger.info(f"gradio: {gr.__version__}")
    logger.info(f"ir_datasets: {ir_datasets.__version__}")
    
    if torch.cuda.is_available():
        logger.info(f"\nCUDA Information:")
        logger.info(f"CUDA available: Yes")
        logger.info(f"CUDA version: {torch.version.cuda}")
        logger.info(f"cuDNN version: {torch.backends.cudnn.version()}")
        logger.info(f"Number of GPUs: {torch.cuda.device_count()}")
        for i in range(torch.cuda.device_count()):
            logger.info(f"GPU {i}: {torch.cuda.get_device_name(i)}")
    else:
        logger.info("\nCUDA Information:")
        logger.info("CUDA available: No")

log_system_info()

def pool(last_hidden_states, attention_mask, pool_type="last"):
    last_hidden = last_hidden_states.masked_fill(~attention_mask[..., None].bool(), 0.0)

    if pool_type == "last":
        left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
        if left_padding:
            emb = last_hidden[:, -1]
        else:
            sequence_lengths = attention_mask.sum(dim=1) - 1
            batch_size = last_hidden.shape[0]
            emb = last_hidden[torch.arange(batch_size, device=last_hidden.device), sequence_lengths]
    else:
        raise ValueError(f"pool_type {pool_type} not supported")

    return emb

def create_batch_dict(tokenizer, input_texts, always_add_eos="last", max_length=512):
    batch_dict = tokenizer(
        input_texts,
        max_length=max_length - 1,
        return_token_type_ids=False,
        return_attention_mask=False,
        padding=False,
        truncation=True
    )

    if always_add_eos == "last":
        batch_dict['input_ids'] = [input_ids + [tokenizer.eos_token_id] for input_ids in batch_dict['input_ids']]

    return tokenizer.pad(
        batch_dict,
        padding=True,
        pad_to_multiple_of=8,
        return_attention_mask=True,
        return_tensors="pt",
    )

class RepLlamaModel:
    def __init__(self, model_name_or_path):
        self.base_model = "meta-llama/Llama-2-7b-hf"
        self.tokenizer = AutoTokenizer.from_pretrained(self.base_model)
        self.tokenizer.model_max_length = 2048
        self.tokenizer.pad_token_id = self.tokenizer.eos_token_id
        self.tokenizer.pad_token = self.tokenizer.eos_token
        self.tokenizer.padding_side = "right"

        self.model = self.get_model(model_name_or_path)
        self.model.config.max_length = 2048

    def get_model(self, peft_model_name):
        base_model = AutoModel.from_pretrained(self.base_model)
        model = PeftModel.from_pretrained(base_model, peft_model_name)
        model = model.merge_and_unload()
        model.eval()
        return model

    def encode(self, texts, batch_size=48, **kwargs):
        self.model = self.model.cuda()
        all_embeddings = []
        for i in range(0, len(texts), batch_size):
            batch_texts = texts[i:i+batch_size]
            
            batch_dict = create_batch_dict(self.tokenizer, batch_texts, always_add_eos="last")
            batch_dict = {key: value.cuda() for key, value in batch_dict.items()}

            with torch.cuda.amp.autocast():
                with torch.no_grad():
                    outputs = self.model(**batch_dict)
                    embeddings = pool(outputs.last_hidden_state, batch_dict['attention_mask'], 'last')
                    embeddings = F.normalize(embeddings, p=2, dim=-1)
                    logger.info(f"Encoded shape: {embeddings.shape}, Norm of first embedding: {torch.norm(embeddings[0]).item()}")
                    all_embeddings.append(embeddings.cpu().numpy())

        self.model = self.model.cpu()
        return np.concatenate(all_embeddings, axis=0)

def load_corpus_embeddings(dataset_name):
    corpus_path = f"{dataset_name}/corpus_emb.*.pkl"
    index_files = glob.glob(corpus_path)
    index_files.sort(key=lambda x: int(x.split('.')[-2]))
    
    all_embeddings = []
    corpus_lookups = []
    
    for file in index_files:
        with open(file, 'rb') as f:
            embeddings, p_lookup = pickle.load(f)
        all_embeddings.append(embeddings)
        corpus_lookups.extend(p_lookup)
    
    all_embeddings = np.concatenate(all_embeddings, axis=0)
    logger.info(f"Loaded corpus embeddings for {dataset_name}. Shape: {all_embeddings.shape}")
    
    return all_embeddings, corpus_lookups

def create_faiss_index(embeddings):
    dimension = embeddings.shape[1]
    index = faiss.IndexFlatIP(dimension)
    index.add(embeddings)
    logger.info(f"Created FAISS index with {index.ntotal} vectors of dimension {dimension}")
    return index

def load_or_create_faiss_index(dataset_name):
    embeddings, corpus_lookups = load_corpus_embeddings(dataset_name)
    index = create_faiss_index(embeddings)
    return index, corpus_lookups

def initialize_faiss_and_corpus(dataset_name):
    global corpus_lookups
    index, corpus_lookups[dataset_name] = load_or_create_faiss_index(dataset_name)
    logger.info(f"Initialized FAISS index and corpus lookups for {dataset_name}")
    return index

def search_queries(dataset_name, q_reps, depth=100):
    global faiss_index    
    logger.info(f"Searching queries. Shape of q_reps: {q_reps.shape}")
    
    # Perform the search
    all_scores, all_indices = faiss_index.search(q_reps, depth)
    
    logger.info(f"Search completed. Shape of all_scores: {all_scores.shape}, all_indices: {all_indices.shape}")
    logger.info(f"Sample scores: {all_scores[0][:5]}, Sample indices: {all_indices[0][:5]}")
    
    psg_indices = [[str(corpus_lookups[dataset_name][x]) for x in q_dd] for q_dd in all_indices]
    
    return all_scores, np.array(psg_indices)

def load_queries(dataset_name):
    global queries, q_lookups, qrels, query2qid
    dataset = ir_datasets.load(f"beir/{dataset_name.lower()}" + ("/test" if dataset_name == "scifact" else ""))
    
    queries[dataset_name] = []
    query2qid[dataset_name] = defaultdict(dict)
    q_lookups[dataset_name] = {}
    qrels[dataset_name] = {}
    for query in dataset.queries_iter():
        queries[dataset_name].append(query.text)
        q_lookups[dataset_name][query.query_id] = query.text
        query2qid[dataset_name][query.text] = query.query_id
    
    for qrel in dataset.qrels_iter():
        if qrel.query_id not in qrels[dataset_name]:
            qrels[dataset_name][qrel.query_id] = {}
        qrels[dataset_name][qrel.query_id][qrel.doc_id] = qrel.relevance

    logger.info(f"Loaded queries for {dataset_name}. Total queries: {len(queries[dataset_name])}")
    logger.info(f"Loaded qrels for {dataset_name}. Total query IDs: {len(qrels[dataset_name])}")

def evaluate(qrels, results, k_values):
    qrels = {str(k): {str(k2): v2 for k2, v2 in v.items()} for k, v in qrels.items()}
    results = {str(k): {str(k2): v2 for k2, v2 in v.items()} for k, v in results.items()}
    evaluator = pytrec_eval.RelevanceEvaluator(
        qrels, {f"ndcg_cut.{k}" for k in k_values} | {f"recall.{k}" for k in k_values}
    )
    scores = evaluator.evaluate(results)

    metrics = {}
    for k in k_values:
        ndcg_scores = [query_scores[f"ndcg_cut_{k}"] for query_scores in scores.values()]
        recall_scores = [query_scores[f"recall_{k}"] for query_scores in scores.values()]
        metrics[f"NDCG@{k}"] = round(np.mean(ndcg_scores), 3)
        metrics[f"Recall@{k}"] = round(np.mean(recall_scores), 3)
        logger.info(f"NDCG@{k}: mean={metrics[f'NDCG@{k}']}, min={min(ndcg_scores)}, max={max(ndcg_scores)}")
        logger.info(f"Recall@{k}: mean={metrics[f'Recall@{k}']}, min={min(recall_scores)}, max={max(recall_scores)}")

    # delete nDCG@100 and Recall@10
    del metrics["NDCG@100"]
    del metrics["Recall@100"]
    return metrics

@spaces.GPU
def run_evaluation(dataset, postfix):
    global current_dataset, queries, model, query2qid
    current_dataset = dataset

    input_texts = [f"query: {query.strip()} {postfix}".strip() for query in queries[current_dataset]]
    logger.info(f"Number of input texts: {len(input_texts)}")
    logger.info(f"Sample input text: {input_texts[0]}")

    q_reps = model.encode(input_texts)
    logger.info(f"Encoded query first five: {q_reps[0][:5]}")
    logger.info(f"Encoded query representations shape: {q_reps.shape}")

    all_scores, psg_indices = search_queries(dataset, q_reps)
    
    results = {}
    logging.info(f"Number of queries in q_lookups: {len(q_lookups[dataset])}")
    logging.info("Size of all_scores: " + str(len(all_scores)))
    logging.info("Size of psg_indices: " + str(len(psg_indices)))
    for query, scores, doc_ids in zip(queries[current_dataset], all_scores, psg_indices):
        qid = query2qid[dataset][query]
        qid_str = str(qid)
        results[qid_str] = {}
        for doc_id, score in zip(doc_ids, scores):
            doc_id_str = str(doc_id)
            results[qid_str][doc_id_str] = float(score)

        if not results[qid_str]:  # If no results for this query
            logger.warning(f"No results for query {qid_str}")

    logger.info(f"Number of queries in results: {len(results)}")
    logger.info(f"Sample result: {next(iter(results.items()))}")

    qrels[dataset] = {str(qid): {str(doc_id): rel for doc_id, rel in rels.items()}
                  for qid, rels in qrels[dataset].items()}

    logger.info(f"Number of results: {len(results)}")
    logger.info(f"Sample result: {list(results.items())[0]}")
    
    logger.info(f"Number of queries in qrels: {len(qrels[dataset])}")
    logger.info(f"Sample qrel: {list(qrels[dataset].items())[0]}")
    logger.info(f"Number of queries in results: {len(results)}")
    logger.info(f"Sample result: {list(results.items())[0]}")
    
    # Check for mismatches
    qrels_keys = set(qrels[dataset].keys())
    results_keys = set(results.keys())
    logger.info(f"Queries in qrels but not in results: {qrels_keys - results_keys}")
    logger.info(f"Queries in results but not in qrels: {results_keys - qrels_keys}")
    
    metrics = evaluate(qrels[dataset], results, k_values=[10, 100])
    
    return metrics

@spaces.GPU
def gradio_interface(dataset, postfix):
    return run_evaluation(dataset, postfix)

if model is None:
    model = RepLlamaModel(model_name_or_path=CUR_MODEL)
    load_queries(current_dataset)   
    faiss_index = initialize_faiss_and_corpus(current_dataset)

# Create Gradio interface
iface = gr.Interface(
    fn=gradio_interface,
    inputs=[
        gr.Dropdown(choices=datasets, label="Dataset", value="scifact"),
        gr.Textbox(label="Prompt")
    ],
    outputs=gr.JSON(label="Evaluation Results"),
    title="Promptriever Demo",
    description="Enter a prompt to evaluate the model's performance on SciFact. Note: it takes about **30 seconds** to evaluate.",
    examples=[
        ["scifact", ""],
        ["scifact", "Think carefully about these conditions when determining relevance"]
    ],
    cache_examples=False,
)

# Launch the interface
iface.launch(share=False)