import os
import re
import random
import json
import requests
import gradio as gr
from gradio_client import Client, file
import numpy as np
from PIL import Image
from typing import Tuple
from translatepy import Translator
from io import BytesIO
MODEL = os.environ.get("MODEL")
MODEL2 = os.environ.get("MODEL2")
DESCRIPTION = """
# IMGEN🧚♀️
🧚♂️输入描述生成图片,选择喜欢的风格~
🧚默认使用Turbo快速生成,高级选项可更改。
"""
MODEL_ID="stabilityai/sdxl-turbo"
LICENSE = "采用 SDXL 模型"
translator = Translator()
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
if randomize_seed:
seed = random.randint(0, MAX_SEED)
return seed
MAX_SEED = np.iinfo(np.int32).max
client = Client(MODEL)
client2 = Client(MODEL2)
style_list = [
{
"name": "(无风格)",
"prompt": "{prompt}",
},
{
"name": "电影",
"prompt": "cinematic, {prompt}, detailed, bokeh, moody, film grain",
},
{
"name": "摄影",
"prompt": "realistic photo, {prompt}, 35mm photograph, 4k",
},
{
"name": "动画",
"prompt": "anime style, {prompt}, studio anime",
},
{
"name": "漫画",
"prompt": "manga style, {prompt}, detailed, Japanese comic style",
},
{
"name": "数绘",
"prompt": "{prompt}, digital artwork, detailed",
},
{
"name": "像素",
"prompt": "pixel-art, {prompt}, 8-bit graphics",
},
{
"name": "幻想",
"prompt": "fantasy style, {prompt}, epic, magical, dreamy",
},
{
"name": "朋克",
"prompt": "cyberpunk style, {prompt}, stunningly beautiful, ultra detailed, realistic",
},
{
"name": "三维",
"prompt": "3d model, {prompt}, highly quality, dramatic lighting",
},
]
styles = {k["name"]: (k["prompt"]) for k in style_list}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = "(无风格)"
def apply_style(style_name: str, positive: str) -> Tuple[str]:
p = styles.get(style_name, styles[DEFAULT_STYLE_NAME])
return p.replace("{prompt}", positive)
def list_dir(path):
for root, dirs, files in os.walk(path):
for file in files:
print(os.path.join(root, file))
def generate(
prompt: str,
seed: float = 0,
steps: float = 1,
style: str = DEFAULT_STYLE_NAME,
randomize_seed: bool = False,
use_turbo: bool = True,
progress=gr.Progress(track_tqdm=True),
):
prompt = str(translator.translate(prompt, 'English'))
print(f'prompt:{prompt}')
seed = int(randomize_seed_fn(seed, randomize_seed))
# print(client_test.view_api())
prompt = apply_style(style, prompt)
strength = 0.7
images = []
if use_turbo:
result = client.predict(
None,
prompt,
seed,
strength,
steps,
fn_index=1
)
print(result)
image_url = MODEL+"file="+result
images_request = requests.get(image_url)
print(f'A:{images_request}')
pil_image = Image.open(BytesIO(images_request.content))
images.append(pil_image)
print(f'B:{images}')
else:
seed = 0
job = client2.submit(
prompt,
"low_quality",
7.5,
"(No style)",
fn_index=3
)
result = job.result()
for root, dirs, files in os.walk(result):
for file in files:
print(file)
if file.endswith('.jpg'):
images.append(os.path.join(root,file))
return images, seed
examples = [
"坐在火箭上的秋田犬",
"一只吃芝士片的猫",
"太空中骑马的宇航员",
"放学回家的孩子们",
"一个可爱的机器人在照镜子",
"钢铁侠在恐龙时代"
]
CSS = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
visibility: hidden
}
'''
with gr.Blocks(css=CSS, theme="soft") as demo:
gr.Markdown(DESCRIPTION)
with gr.Group():
with gr.Row():
prompt = gr.Text(
label="描述",
show_label=False,
max_lines=1,
placeholder="画什么好呢",
container=False,
scale=3,
)
run_button = gr.Button("生成", scale=1)
result = gr.Gallery(label="作品", columns = 1, preview=True)
with gr.Accordion("高级选项", open=False):
with gr.Row():
steps = gr.Slider(
label="步数",
minimum=1,
maximum=10,
step=1,
value=2,
)
seed = gr.Slider(
label="种子",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
visible=True
)
randomize_seed = gr.Checkbox(label="随机种子", value=True)
use_turbo = gr.Checkbox(label="快速生成", value=True)
with gr.Row(visible=True):
style_selection = gr.Radio(
show_label=True,
container=True,
interactive=True,
choices=STYLE_NAMES,
value=DEFAULT_STYLE_NAME,
label="风格化",
)
with gr.Row():
gr.Examples(
examples=examples,
inputs=prompt,
outputs=[result, seed],
fn=generate,
cache_examples='lazy',
label="示例",
)
with gr.Row():
gr.Markdown(LICENSE)
gr.on(
triggers=[
prompt.submit,
run_button.click,
],
fn=generate,
inputs=[
prompt,
seed,
steps,
style_selection,
randomize_seed,
use_turbo,
],
outputs=[result, seed],
api_name="run",
)
if __name__ == "__main__":
demo.queue(max_size=20).launch(show_api=False, debug=False)