File size: 11,548 Bytes
a54c998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
222377c
 
 
a54c998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
02fab3b
a54c998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1b1a564
222377c
a54c998
a715658
a54c998
 
1b1a564
222377c
a54c998
a715658
a54c998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6e67f46
a54c998
6e67f46
a54c998
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
import os

os.environ["TOKENIZERS_PARALLELISM"] = "false"

from PIL import Image, ImageDraw
import traceback

import gradio as gr

import torch
from docquery import pipeline
from docquery.document import load_document, ImageDocument
from docquery.ocr_reader import get_ocr_reader


def ensure_list(x):
    if isinstance(x, list):
        return x
    else:
        return [x]


CHECKPOINTS = {
    "LayoutLMv1": "impira/layoutlm-document-qa",
    "LayoutLMv1 for Invoices": "impira/layoutlm-invoices",
    "Donut": "naver-clova-ix/donut-base-finetuned-docvqa",
}

PIPELINES = {}


def construct_pipeline(task, model):
    global PIPELINES
    if model in PIPELINES:
        return PIPELINES[model]

    device = "cuda" if torch.cuda.is_available() else "cpu"
    ret = pipeline(task=task, model=CHECKPOINTS[model], device=device)
    PIPELINES[model] = ret
    return ret


def run_pipeline(model, question, document, top_k):
    pipeline = construct_pipeline("document-question-answering", model)
    return pipeline(question=question, **document.context, top_k=top_k)


# TODO: Move into docquery
# TODO: Support words past the first page (or window?)
def lift_word_boxes(document, page):
    return document.context["image"][page][1]


def expand_bbox(word_boxes):
    if len(word_boxes) == 0:
        return None

    min_x, min_y, max_x, max_y = zip(*[x[1] for x in word_boxes])
    min_x, min_y, max_x, max_y = [min(min_x), min(min_y), max(max_x), max(max_y)]
    return [min_x, min_y, max_x, max_y]


# LayoutLM boxes are normalized to 0, 1000
def normalize_bbox(box, width, height, padding=0.005):
    min_x, min_y, max_x, max_y = [c / 1000 for c in box]
    if padding != 0:
        min_x = max(0, min_x - padding)
        min_y = max(0, min_y - padding)
        max_x = min(max_x + padding, 1)
        max_y = min(max_y + padding, 1)
    return [min_x * width, min_y * height, max_x * width, max_y * height]


examples = [
    [
        "invoice.png",
        "What is the invoice number?",
    ],
    [
        "contract.jpeg",
        "What is the purchase amount?",
    ],
    [
        "statement.png",
        "What are net sales for 2020?",
    ],
    #    [
    #        "docquery.png",
    #        "How many likes does the space have?",
    #    ],
    #    [
    #        "hacker_news.png",
    #        "What is the title of post number 5?",
    #    ],
]

question_files = {
    "What are net sales for 2020?": "statement.pdf",
    "How many likes does the space have?": "https://huggingface.co/spaces/impira/docquery",
    "What is the title of post number 5?": "https://news.ycombinator.com",
}


def process_path(path):
    error = None
    if path:
        try:
            document = load_document(path)
            return (
                document,
                gr.update(visible=True, value=document.preview),
                gr.update(visible=True),
                gr.update(visible=False, value=None),
                gr.update(visible=False, value=None),
                None,
            )
        except Exception as e:
            traceback.print_exc()
            error = str(e)
    return (
        None,
        gr.update(visible=False, value=None),
        gr.update(visible=False),
        gr.update(visible=False, value=None),
        gr.update(visible=False, value=None),
        gr.update(visible=True, value=error) if error is not None else None,
        None,
    )


def process_upload(file):
    if file:
        return process_path(file.name)
    else:
        return (
            None,
            gr.update(visible=False, value=None),
            gr.update(visible=False),
            gr.update(visible=False, value=None),
            gr.update(visible=False, value=None),
            None,
        )


colors = ["#64A087", "black", "black"]


def process_question(question, document, model=list(CHECKPOINTS.keys())[0]):
    if not question or document is None:
        return None, None, None

    text_value = None
    predictions = run_pipeline(model, question, document, 3)
    pages = [x.copy().convert("RGB") for x in document.preview]
    for i, p in enumerate(ensure_list(predictions)):
        if i == 0:
            text_value = p["answer"]
        else:
            # Keep the code around to produce multiple boxes, but only show the top
            # prediction for now
            break

        if "word_ids" in p:
            image = pages[p["page"]]
            draw = ImageDraw.Draw(image, "RGBA")
            word_boxes = lift_word_boxes(document, p["page"])
            x1, y1, x2, y2 = normalize_bbox(
                expand_bbox([word_boxes[i] for i in p["word_ids"]]),
                image.width,
                image.height,
            )
            draw.rectangle(((x1, y1), (x2, y2)), fill=(0, 255, 0, int(0.4 * 255)))

    return (
        gr.update(visible=True, value=pages),
        gr.update(visible=True, value=predictions),
        gr.update(
            visible=True,
            value=text_value,
        ),
    )


def load_example_document(img, question, model):
    if img is not None:
        if question in question_files:
            document = load_document(question_files[question])
        else:
            document = ImageDocument(Image.fromarray(img), get_ocr_reader())
        preview, answer, answer_text = process_question(question, document, model)
        return document, question, preview, gr.update(visible=True), answer, answer_text
    else:
        return None, None, None, gr.update(visible=False), None, None


CSS = """
#question input {
    font-size: 16px;
}
#url-textbox {
    padding: 0 !important;
}
#short-upload-box .w-full {
    min-height: 10rem !important;
}
/* I think something like this can be used to re-shape
 * the table
 */
/*
.gr-samples-table tr {
    display: inline;
}
.gr-samples-table .p-2 {
    width: 100px;
}
*/
#select-a-file {
    width: 100%;
}
#file-clear {
    padding-top: 2px !important;
    padding-bottom: 2px !important;
    padding-left: 8px !important;
    padding-right: 8px !important;
	margin-top: 10px;
}
.gradio-container .gr-button-primary {
    background: linear-gradient(180deg, #FAED27 0%, #FAED27 100%);
    border: 1px solid #000000;
    border-radius: 8px;
    color: #000000;
}
.gradio-container.dark button#submit-button {
    background: linear-gradient(180deg, #FAED27 0%, #FAED27 100%);
    border: 1px solid #000000;
    border-radius: 8px;
    color: #000000
}

table.gr-samples-table tr td {
    border: none;
    outline: none;
}

table.gr-samples-table tr td:first-of-type {
    width: 0%;
}

div#short-upload-box div.absolute {
    display: none !important;
}

gradio-app > div > div > div > div.w-full > div, .gradio-app > div > div > div > div.w-full > div {
    gap: 0px 2%;
}

gradio-app div div div div.w-full, .gradio-app div div div div.w-full {
    gap: 0px;
}

gradio-app h2, .gradio-app h2 {
    padding-top: 10px;
}

#answer {
    overflow-y: scroll;
    color: white;
    background: #666;
    border-color: #666;
    font-size: 20px;
    font-weight: bold;
}

#answer span {
    color: white;
}

#answer textarea {
    color:white;
    background: #777;
    border-color: #777;
    font-size: 18px;
}

#url-error input {
    color: red;
}
"""

with gr.Blocks(css=CSS) as demo:
    gr.Markdown()
    gr.Markdown(
        
    )

    document = gr.Variable()
    example_question = gr.Textbox(visible=False)
    example_image = gr.Image(visible=False)

    with gr.Row(equal_height=True):
        with gr.Column():
            with gr.Row():
                gr.Markdown("## 1. Select a file", elem_id="select-a-file")
                img_clear_button = gr.Button(
                    "Clear", variant="secondary", elem_id="file-clear", visible=False
                )
            image = gr.Gallery(visible=False)
            with gr.Row(equal_height=True):
                with gr.Column():
                    with gr.Row():
                        url = gr.Textbox(
                            show_label=False,
                            placeholder="URL",
                            lines=1,
                            max_lines=1,
                            elem_id="url-textbox",
                        )
                        submit = gr.Button("Get")
                    url_error = gr.Textbox(
                        visible=False,
                        elem_id="url-error",
                        max_lines=1,
                        interactive=False,
                        label="Error",
                    )
            gr.Markdown("— or —")
            upload = gr.File(label=None, interactive=True, elem_id="short-upload-box")
            gr.Examples(
                examples=examples,
                inputs=[example_image, example_question],
            )

        with gr.Column() as col:
            gr.Markdown("## 2. Ask a question")
            question = gr.Textbox(
                label="Question",
                placeholder="e.g. What is the invoice number?",
                lines=1,
                max_lines=1,
            )
            model = gr.Radio(
                choices=list(CHECKPOINTS.keys()),
                value=list(CHECKPOINTS.keys())[0],
                label="Model",
            )

            with gr.Row():
                clear_button = gr.Button("Clear", variant="secondary")
                submit_button = gr.Button(
                    "Submit", variant="primary", elem_id="submit-button"
                )
            with gr.Column():
                output_text = gr.Textbox(
                    label="Top Answer", visible=False, elem_id="answer"
                )
                output = gr.JSON(label="Output", visible=False)

    for cb in [img_clear_button, clear_button]:
        cb.click(
            lambda _: (
                gr.update(visible=False, value=None),
                None,
                gr.update(visible=False, value=None),
                gr.update(visible=False, value=None),
                gr.update(visible=False),
                None,
                None,
                None,
                gr.update(visible=False, value=None),
                None,
            ),
            inputs=clear_button,
            outputs=[
                image,
                document,
                output,
                output_text,
                img_clear_button,
                example_image,
                upload,
                url,
                url_error,
                question,
            ],
        )

    upload.change(
        fn=process_upload,
        inputs=[upload],
        outputs=[document, image, img_clear_button, output, output_text, url_error],
    )
    submit.click(
        fn=process_path,
        inputs=[url],
        outputs=[document, image, img_clear_button, output, output_text, url_error],
    )

    question.submit(
        fn=process_question,
        inputs=[question, document, model],
        outputs=[image, output, output_text],
    )

    submit_button.click(
        process_question,
        inputs=[question, document, model],
        outputs=[image, output, output_text],
    )

    model.change(
        process_question,
        inputs=[question, document, model],
        outputs=[image, output, output_text],
    )

    example_image.change(
        fn=load_example_document,
        inputs=[example_image, example_question, model],
        outputs=[document, question, image, img_clear_button, output, output_text],
    )

if __name__ == "__main__":
    demo.launch(enable_queue=False)