Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
# | |
# This source code is licensed under the MIT license found in the | |
# LICENSE file in the root directory of this source tree. | |
import math | |
from fairseq import metrics, utils | |
from fairseq.criterions import FairseqCriterion, register_criterion | |
try: | |
from fairseq.model_parallel.megatron.mpu.cross_entropy import ( | |
vocab_parallel_cross_entropy, | |
) | |
has_megatron_submodule = True | |
except (ImportError, ModuleNotFoundError): | |
has_megatron_submodule = False | |
class VocabParallelCrossEntropyCriterion(FairseqCriterion): | |
def __init__(self, task, sentence_avg): | |
super().__init__(task) | |
self.sentence_avg = sentence_avg | |
if not has_megatron_submodule: | |
raise ImportError( | |
"\n\nPlease install the megatron submodule:" | |
"\n\n git submodule update --init " | |
"fairseq/model_parallel/megatron" | |
) | |
def forward(self, model, sample, reduce=True): | |
"""Compute the loss for the given sample. | |
Returns a tuple with three elements: | |
1) the loss | |
2) the sample size, which is used as the denominator for the gradient | |
3) logging outputs to display while training | |
""" | |
net_output = model(**sample["net_input"]) | |
target = sample["target"] | |
loss = vocab_parallel_cross_entropy(net_output[0].float(), target) | |
loss = (loss * (target != self.padding_idx)).sum() | |
sample_size = ( | |
sample["target"].size(0) if self.sentence_avg else sample["ntokens"] | |
) | |
logging_output = { | |
"loss": utils.item(loss.data) if reduce else loss.data, | |
"ntokens": sample["ntokens"], | |
"nsentences": sample["target"].size(0), | |
"sample_size": sample_size, | |
} | |
return loss, sample_size, logging_output | |
def reduce_metrics(logging_outputs) -> None: | |
"""Aggregate logging outputs from data parallel training.""" | |
loss_sum = sum(log.get("loss", 0) for log in logging_outputs) | |
ntokens = sum(log.get("ntokens", 0) for log in logging_outputs) | |
sample_size = sum(log.get("sample_size", 0) for log in logging_outputs) | |
metrics.log_scalar( | |
"loss", loss_sum / sample_size / math.log(2), sample_size, round=3 | |
) | |
if sample_size != ntokens: | |
metrics.log_scalar( | |
"nll_loss", loss_sum / ntokens / math.log(2), ntokens, round=3 | |
) | |
metrics.log_derived( | |
"ppl", lambda meters: utils.get_perplexity(meters["nll_loss"].avg) | |
) | |
else: | |
metrics.log_derived( | |
"ppl", lambda meters: utils.get_perplexity(meters["loss"].avg) | |
) | |
def logging_outputs_can_be_summed() -> bool: | |
""" | |
Whether the logging outputs returned by `forward` can be summed | |
across workers prior to calling `reduce_metrics`. Setting this | |
to True will improves distributed training speed. | |
""" | |
return True | |