osanseviero's picture
Update app.py
02ad0aa
import PIL
import torch
import torch.nn as nn
import cv2
from skimage.color import lab2rgb, rgb2lab, rgb2gray
from skimage import io
import matplotlib.pyplot as plt
import numpy as np
class ColorizationNet(nn.Module):
def __init__(self, input_size=128):
super(ColorizationNet, self).__init__()
MIDLEVEL_FEATURE_SIZE = 128
resnet=models.resnet18(pretrained=True)
resnet.conv1.weight=nn.Parameter(resnet.conv1.weight.sum(dim=1).unsqueeze(1))
self.midlevel_resnet =nn.Sequential(*list(resnet.children())[0:6])
self.upsample = nn.Sequential(
nn.Conv2d(MIDLEVEL_FEATURE_SIZE, 128, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(),
nn.Upsample(scale_factor=2),
nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(),
nn.Upsample(scale_factor=2),
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1),
nn.BatchNorm2d(32),
nn.ReLU(),
nn.Conv2d(32, 2, kernel_size=3, stride=1, padding=1),
nn.Upsample(scale_factor=2)
)
def forward(self, input):
# Pass input through ResNet-gray to extract features
midlevel_features = self.midlevel_resnet(input)
# Upsample to get colors
output = self.upsample(midlevel_features)
return output
def show_output(grayscale_input, ab_input):
'''Show/save rgb image from grayscale and ab channels
Input save_path in the form {'grayscale': '/path/', 'colorized': '/path/'}'''
color_image = torch.cat((grayscale_input, ab_input), 0).detach().numpy() # combine channels
color_image = color_image.transpose((1, 2, 0)) # rescale for matplotlib
color_image[:, :, 0:1] = color_image[:, :, 0:1] * 100
color_image[:, :, 1:3] = color_image[:, :, 1:3] * 255 - 128
color_image = lab2rgb(color_image.astype(np.float64))
grayscale_input = grayscale_input.squeeze().numpy()
# plt.imshow(grayscale_input)
# plt.imshow(color_image)
return color_image
def colorize(img,print_img=True):
# img=cv2.imread(img)
img=cv2.resize(img,(224,224))
grayscale_input= torch.Tensor(rgb2gray(img))
ab_input=model(grayscale_input.unsqueeze(0).unsqueeze(0)).squeeze(0)
predicted=show_output(grayscale_input.unsqueeze(0), ab_input)
if print_img:
plt.imshow(predicted)
return predicted
# device=torch.device("cuda" if torch.cuda.is_available() else "cpu")
# torch.load with map_location=torch.device('cpu')
model=torch.load("model-final.pth",map_location ='cpu')
import streamlit as st
st.title("Image Colorizer")
st.write('\n')
st.write('Find more info at: https://github.com/Pranav082001/Neural-Image-Colorizer or at https://medium.com/@pranav.kushare2001/colorize-your-black-and-white-photos-using-ai-4652a34e967.')
# Sidebar
st.sidebar.title("Upload Image")
file=st.sidebar.file_uploader("Please upload a Black and White image",type=["jpg","jpeg","png"])
if st.sidebar.button("Colorize image"):
with st.spinner('Colorizing...'):
file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8)
opencv_image = cv2.imdecode(file_bytes, 1)
im=colorize(opencv_image)
st.text("Original")
st.image(file)
st.text("Colorized!!")
st.image(im)