Spaces:
Build error
Build error
import PIL | |
import torch | |
import torch.nn as nn | |
import cv2 | |
from skimage.color import lab2rgb, rgb2lab, rgb2gray | |
from skimage import io | |
import matplotlib.pyplot as plt | |
import numpy as np | |
class ColorizationNet(nn.Module): | |
def __init__(self, input_size=128): | |
super(ColorizationNet, self).__init__() | |
MIDLEVEL_FEATURE_SIZE = 128 | |
resnet=models.resnet18(pretrained=True) | |
resnet.conv1.weight=nn.Parameter(resnet.conv1.weight.sum(dim=1).unsqueeze(1)) | |
self.midlevel_resnet =nn.Sequential(*list(resnet.children())[0:6]) | |
self.upsample = nn.Sequential( | |
nn.Conv2d(MIDLEVEL_FEATURE_SIZE, 128, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(128), | |
nn.ReLU(), | |
nn.Upsample(scale_factor=2), | |
nn.Conv2d(128, 64, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(), | |
nn.Conv2d(64, 64, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(64), | |
nn.ReLU(), | |
nn.Upsample(scale_factor=2), | |
nn.Conv2d(64, 32, kernel_size=3, stride=1, padding=1), | |
nn.BatchNorm2d(32), | |
nn.ReLU(), | |
nn.Conv2d(32, 2, kernel_size=3, stride=1, padding=1), | |
nn.Upsample(scale_factor=2) | |
) | |
def forward(self, input): | |
# Pass input through ResNet-gray to extract features | |
midlevel_features = self.midlevel_resnet(input) | |
# Upsample to get colors | |
output = self.upsample(midlevel_features) | |
return output | |
def show_output(grayscale_input, ab_input): | |
'''Show/save rgb image from grayscale and ab channels | |
Input save_path in the form {'grayscale': '/path/', 'colorized': '/path/'}''' | |
color_image = torch.cat((grayscale_input, ab_input), 0).detach().numpy() # combine channels | |
color_image = color_image.transpose((1, 2, 0)) # rescale for matplotlib | |
color_image[:, :, 0:1] = color_image[:, :, 0:1] * 100 | |
color_image[:, :, 1:3] = color_image[:, :, 1:3] * 255 - 128 | |
color_image = lab2rgb(color_image.astype(np.float64)) | |
grayscale_input = grayscale_input.squeeze().numpy() | |
# plt.imshow(grayscale_input) | |
# plt.imshow(color_image) | |
return color_image | |
def colorize(img,print_img=True): | |
# img=cv2.imread(img) | |
img=cv2.resize(img,(224,224)) | |
grayscale_input= torch.Tensor(rgb2gray(img)) | |
ab_input=model(grayscale_input.unsqueeze(0).unsqueeze(0)).squeeze(0) | |
predicted=show_output(grayscale_input.unsqueeze(0), ab_input) | |
if print_img: | |
plt.imshow(predicted) | |
return predicted | |
# device=torch.device("cuda" if torch.cuda.is_available() else "cpu") | |
# torch.load with map_location=torch.device('cpu') | |
model=torch.load("model-final.pth",map_location ='cpu') | |
import streamlit as st | |
st.title("Image Colorizer") | |
st.write('\n') | |
st.write('Find more info at: https://github.com/Pranav082001/Neural-Image-Colorizer or at https://medium.com/@pranav.kushare2001/colorize-your-black-and-white-photos-using-ai-4652a34e967.') | |
# Sidebar | |
st.sidebar.title("Upload Image") | |
file=st.sidebar.file_uploader("Please upload a Black and White image",type=["jpg","jpeg","png"]) | |
if st.sidebar.button("Colorize image"): | |
with st.spinner('Colorizing...'): | |
file_bytes = np.asarray(bytearray(file.read()), dtype=np.uint8) | |
opencv_image = cv2.imdecode(file_bytes, 1) | |
im=colorize(opencv_image) | |
st.text("Original") | |
st.image(file) | |
st.text("Colorized!!") | |
st.image(im) | |