File size: 5,575 Bytes
19b831b
 
 
 
 
5256b8e
 
 
19b831b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5256b8e
19b831b
 
 
 
 
 
 
 
5256b8e
19b831b
 
 
 
 
 
 
 
 
 
 
 
5256b8e
19b831b
 
10f379b
19b831b
 
 
 
 
5256b8e
19b831b
 
 
 
 
 
5256b8e
19b831b
 
 
 
 
 
 
 
 
 
 
 
 
 
5256b8e
 
 
 
 
 
 
 
 
 
 
 
 
 
19b831b
 
d61d9e2
19b831b
99bd894
bfccab3
 
 
 
 
 
 
 
 
d6f24d7
bfccab3
 
 
 
 
 
5256b8e
19b831b
5256b8e
 
 
19b831b
5256b8e
 
 
19b831b
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
import gradio as gr
import os
import requests


DEFAULT_SEQ = "MGSSHHHHHHSSGLVPRGSHMRGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSRNAKQFLEINGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTRVSDFRTANCSLEDPAANKARKEAELAAATAEQ"


def read_mol(molpath):
    with open(molpath, "r") as fp:
        lines = fp.readlines()
    mol = ""
    for l in lines:
        mol += l
    return mol


def molecule(input_pdb):
    mol = read_mol(input_pdb)

    x = (
        """<!DOCTYPE html>
        <html>
        <head>    
    <meta http-equiv="content-type" content="text/html; charset=UTF-8" />
    <style>
    body{
        font-family:sans-serif
    }
    .mol-container {
    width: 100%;
    height: 380px;
    position: relative;
    }
    .mol-container select{
        background-image:None;
    }
    </style>
    <script src="https://3Dmol.csb.pitt.edu/build/3Dmol-min.js"></script>
    </head>
    <body style="overflow: hidden;">  
    <div id="container" class="mol-container"></div>
  
            <script>
               let pdb = `"""
        + mol
        + """`  
      
             $(document).ready(function () {
                let element = $("#container");
                let config = { backgroundColor: "white" };
                let viewer = $3Dmol.createViewer(element, config);
                viewer.addModel(pdb, "pdb");
                viewer.getModel(0).setStyle({}, { cartoon: { colorscheme: {"prop":"resi","gradient":"roygb", "min": 26, "max": 250} } });
                viewer.zoomTo();
                viewer.render();
                viewer.zoom(1.2, 2000);
              })
        </script>
        </body></html>"""
    )

    return f"""<iframe style="width: 100%; height: 380px" name="result" allow="midi; geolocation; microphone; camera; 
    display-capture; encrypted-media;" sandbox="allow-modals allow-forms 
    allow-scripts allow-same-origin allow-popups 
    allow-top-navigation-by-user-activation allow-downloads" allowfullscreen="" 
    allowpaymentrequest="" frameborder="0" srcdoc='{x}'></iframe>"""


def update(sequence=DEFAULT_SEQ):
    headers = {
        'Content-Type': 'application/x-www-form-urlencoded',
    }

    response = requests.post('https://api.esmatlas.com/foldSequence/v1/pdb/', headers=headers, data=sequence)
    name = sequence[:3] + sequence[-3:] 
    pdb_filename = "test.pdb"
    pdb_string = response.content.decode('utf-8')
    with open(pdb_filename, "w") as out:
      out.write(pdb_string)

    return molecule(pdb_filename)


def suggest(option):
   if option == "Plastic degradation protein":
     suggestion = "MGSSHHHHHHSSGLVPRGSHMRGPNPTAASLEASAGPFTVRSFTVSRPSGYGAGTVYYPTNAGGTVGAIAIVPGYTARQSSIKWWGPRLASHGFVVITIDTNSTLDQPSSRSSQQMAALRQVASLNGTSSSPIYGKVDTARMGVMGWSMGGGGSLISAANNPSLKAAAPQAPWDSSTNFSSVTVPTLIFACENDSIAPVNSSALPIYDSMSRNAKQFLEINGGSHSCANSGNSNQALIGKKGVAWMKRFMDNDTRYSTFACENPNSTRVSDFRTANCSLEDPAANKARKEAELAAATAEQ"
   elif option == "Antifreeze protein":
     suggestion = "QCTGGADCTSCTGACTGCGNCPNAVTCTNSQHCVKANTCTGSTDCNTAQTCTNSKDCFEANTCTDSTNCYKATACTNSSGCPGH"
   elif option == "AI Generated protein":
     suggestion = "MSGMKKLYEYTVTTLDEFLEKLKEFILNTSKDKIYKLTITNPKLIKDIGKAIAKAAEIADVDPKEIEEMIKAVEENELTKLVITIEQTDDKYVIKVELENEDGLVHSFEIYFKNKEEMEKFLELLEKLISKLSGS"
   elif option == "7-bladed propeller fold":
     suggestion = "VKLAGNSSLCPINGWAVYSKDNSIRIGSKGDVFVIREPFISCSHLECRTFFLTQGALLNDKHSNGTVKDRSPHRTLMSCPVGEAPSPYNSRFESVAWSASACHDGTSWLTIGISGPDNGAVAVLKYNGIITDTIKSWRNNILRTQESECACVNGSCFTVMTDGPSNGQASYKIFKMEKGKVVKSVELDAPNYHYEECSCYPNAGEITCVCRDNWHGSNRPWVSFNQNLEYQIGYICSGVFGDNPRPNDGTGSCGPVSSNGAYGVKGFSFKYGNGVWIGRTKSTNSRSGFEMIWDPNGWTETDSSFSVKQDIVAITDWSGYSGSFVQHPELTGLDCIRPCFWVELIRGRPKESTIWTSGSSISFCGVNSDTVGWSWPDGAELPFTIDK"
   else:
     suggestion = ""
   return suggestion


demo = gr.Blocks()


with demo:
    gr.HTML("""<div style="text-align: center; max-width: 700px; margin: 0 auto;">
              <div
              style="
                  display: inline-flex;
                  align-items: center;
                  gap: 0.8rem;
                  font-size: 1.75rem;
              "
              >
              <h1 style="font-weight: 900; margin-bottom: 7px; margin-top: 5px;">
                   ESMFold Protein Folding demo
              </h1>
              </div>
              <p style="margin-bottom: 10px; font-size: 94%">
                  You can input a single protein sequence and you get the predicted protein structure
              </p>
          </div>""")
    name = gr.Dropdown(label="Choose a Sample Protein", value="Plastic degradation protein", choices=["Antifreeze protein", "Plastic degradation protein",  "AI Generated protein", "7-bladed propeller fold", "custom"])
    with gr.Row():
        inp = gr.Textbox(label="Protein sequence", lines=3, value=DEFAULT_SEQ, placeholder="Write your protein sequence here...")
        btn = gr.Button("🔬 Predict Structure ").style(full_width=False)
    mol = gr.HTML(update)    
    btn.click(fn=update, inputs=inp, outputs=mol)
    name.change(fn=suggest, inputs=name, outputs=inp)
    name.change(fn=lambda :"", inputs=None, outputs=mol)
    gr.Markdown("A demo of [ESM](https://esmatlas.com/about) by Meta using the API. You can also use ESM in Hugging Face `transformers` as shown [here](https://github.com/huggingface/notebooks/blob/main/examples/protein_folding.ipynb), which is supported since [v4.24](https://github.com/huggingface/transformers/releases/tag/v4.24.0).")
demo.launch()