from fastmri.data.subsample import create_mask_for_mask_type from fastmri.data.transforms import apply_mask, to_tensor, center_crop import numpy as np mask_func =create_mask_for_mask_type( mask_type_str="equispaced", center_fractions=[0.37], accelerations=[4] ) kspace = np.load("data/prostate1_kspace.npy") print(kspace.shape) # (34, 14, 640, 451) kspace = to_tensor(kspace) print(kspace.shape) # torch.Size([34, 14, 640, 451, 2]) subsampled_kspace, mask, num_low_frequencies = apply_mask( kspace, mask_func, seed=1 )