Spaces:
Runtime error
Runtime error
import model | |
import os | |
import torch | |
import gradio as gr | |
from timeit import default_timer as timer | |
from torch import nn | |
from torchvision import transforms | |
class_names = ['chicken', 'elephant' ,'sheep'] | |
DEVICE = 'cpu' | |
vit_model, vit_transform = model.create_vitb16_model( | |
num_classes=len(class_names) | |
) | |
vit_model.load_state_dict( | |
torch.load( | |
f='vitb16_v1.pth', | |
map_location=torch.device(DEVICE), | |
) | |
) | |
def predict_single_image(image): | |
start_time = timer() | |
image = vit_transform(image).unsqueeze(0).to(DEVICE) | |
vit_model.eval() | |
logits = vit_model(image) | |
with torch.inference_mode(): | |
probs = torch.softmax(logits, dim=1) | |
classes_and_probs = {class_names[i]: float(probs[0][i]) for i in range(len(class_names))} | |
inference_time = round(timer() - start_time, 5) | |
return classes_and_probs, inference_time | |
title = 'AnimalsVision \U0001F413\U0001F418\U0001F411' | |
description = 'A ViT computer vision model to classify images of animals as chicken\U0001F413, elephant\U0001F418 or sheep\U0001F411.' | |
article = 'GitHub Repo: https://github.com/oschan77/AnimalsVision-App' | |
examples = [['examples/' + example] for example in os.listdir('examples/')] | |
app = gr.Interface( | |
fn=predict_single_image, | |
inputs=gr.Image(type='pil'), | |
outputs=[ | |
gr.Label(num_top_classes=len(class_names), label='Predictions'), | |
gr.Number(label='Prediction time (sec)'), | |
], | |
examples=examples, | |
title=title, | |
description=description, | |
article=article, | |
) | |
app.launch() | |