animalsvision / app.py
oschan77
Modify app description
dcea233
import model
import os
import torch
import gradio as gr
from timeit import default_timer as timer
from torch import nn
from torchvision import transforms
class_names = ['chicken', 'elephant' ,'sheep']
DEVICE = 'cpu'
vit_model, vit_transform = model.create_vitb16_model(
num_classes=len(class_names)
)
vit_model.load_state_dict(
torch.load(
f='vitb16_v1.pth',
map_location=torch.device(DEVICE),
)
)
def predict_single_image(image):
start_time = timer()
image = vit_transform(image).unsqueeze(0).to(DEVICE)
vit_model.eval()
logits = vit_model(image)
with torch.inference_mode():
probs = torch.softmax(logits, dim=1)
classes_and_probs = {class_names[i]: float(probs[0][i]) for i in range(len(class_names))}
inference_time = round(timer() - start_time, 5)
return classes_and_probs, inference_time
title = 'AnimalsVision \U0001F413\U0001F418\U0001F411'
description = 'A ViT computer vision model to classify images of animals as chicken\U0001F413, elephant\U0001F418 or sheep\U0001F411.'
article = 'GitHub Repo: https://github.com/oschan77/AnimalsVision-App'
examples = [['examples/' + example] for example in os.listdir('examples/')]
app = gr.Interface(
fn=predict_single_image,
inputs=gr.Image(type='pil'),
outputs=[
gr.Label(num_top_classes=len(class_names), label='Predictions'),
gr.Number(label='Prediction time (sec)'),
],
examples=examples,
title=title,
description=description,
article=article,
)
app.launch()