File size: 672 Bytes
b6aa467 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 |
from transformers import AutoModel
from torch import nn
class BERTClassifier(nn.Module):
def __init__(self, bert_path="cointegrated/rubert-tiny2"):
super().__init__()
self.bert = AutoModel.from_pretrained(bert_path)
for param in self.bert.parameters():
param.requires_grad = False
self.linear = nn.Sequential(
nn.Linear(312, 150),
nn.Dropout(0.1),
nn.ReLU(),
nn.Linear(150, 1),
nn.Sigmoid()
)
def forward(self, x, masks):
bert_out = self.bert(x, attention_mask=masks)[0][:, 0, :]
out = self.linear(bert_out)
return out |