File size: 2,068 Bytes
acc4386
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import pandas as pd
from pandas import DataFrame
from typing import Optional
from src.utils import extract_before_parenthesis

class Restaurants:
    def __init__(self, path="/home/user/app/database/restaurants/clean_restaurant_2022.csv"):
        self.path = path
        self.data = pd.read_csv(self.path).dropna()[['Name','Average Cost','Cuisines','Aggregate Rating','City']]
        print("Restaurants loaded.")

    def load_db(self):
        self.data = pd.read_csv(self.path).dropna()

    def run(self,
            city: str,
            ) -> DataFrame:
        """Search for restaurant ."""
        results = self.data[self.data["City"] == city]
        # results = results[results["date"] == date]
        # if price_order == "asc":
        #     results = results.sort_values(by=["Average Cost"], ascending=True)
        # elif price_order == "desc": 
        #     results = results.sort_values(by=["Average Cost"], ascending=False)

        # if rating_order == "asc":
        #     results = results.sort_values(by=["Aggregate Rating"], ascending=True)
        # elif rating_order == "desc":
        #     results = results.sort_values(by=["Aggregate Rating"], ascending=False)
        if len(results) == 0:
            return "There is no restaurant in this city."
        return results

    def run_for_annotation(self,
            city: str,
            ) -> DataFrame:
        """Search for restaurant ."""
        results = self.data[self.data["City"] == extract_before_parenthesis(city)]
        # results = results[results["date"] == date]
        # if price_order == "asc":
        #     results = results.sort_values(by=["Average Cost"], ascending=True)
        # elif price_order == "desc":
        #     results = results.sort_values(by=["Average Cost"], ascending=False)

        # if rating_order == "asc":
        #     results = results.sort_values(by=["Aggregate Rating"], ascending=True)
        # elif rating_order == "desc":
        #     results = results.sort_values(by=["Aggregate Rating"], ascending=False)

        return results