Update app.py
Browse files
app.py
CHANGED
@@ -1,27 +1,20 @@
|
|
1 |
-
import os
|
2 |
import torch
|
|
|
|
|
3 |
import yt_dlp as youtube_dl
|
4 |
import numpy as np
|
5 |
from datasets import Dataset, Audio
|
6 |
from scipy.io import wavfile
|
|
|
7 |
from transformers import pipeline
|
|
|
|
|
8 |
import tempfile
|
|
|
9 |
import time
|
10 |
-
import
|
11 |
-
|
12 |
-
from huggingface_hub import login, HfApi
|
13 |
-
# Ensure you have logged in to Hugging Face Hub
|
14 |
-
HF_API_TOKEN = os.getenv('OAUTH_CLIENT_SECRET')
|
15 |
|
16 |
-
|
17 |
-
#intro{
|
18 |
-
max-width: 100%;
|
19 |
-
text-align: center;
|
20 |
-
margin: 0 auto;
|
21 |
-
}
|
22 |
-
"""
|
23 |
-
|
24 |
-
MODEL_NAME = "openai/whisper-large-v3"
|
25 |
DEMUCS_MODEL_NAME = "htdemucs_ft"
|
26 |
BATCH_SIZE = 8
|
27 |
FILE_LIMIT_MB = 1000
|
@@ -36,20 +29,78 @@ pipe = pipeline(
|
|
36 |
device=device,
|
37 |
)
|
38 |
|
39 |
-
separator = demucs.api.Separator(model=DEMUCS_MODEL_NAME)
|
40 |
|
41 |
def separate_vocal(path):
|
42 |
origin, separated = separator.separate_audio_file(path)
|
43 |
demucs.api.save_audio(separated["vocals"], path, samplerate=separator.samplerate)
|
44 |
return path
|
45 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
def _return_yt_html_embed(yt_url):
|
47 |
video_id = yt_url.split("?v=")[-1]
|
48 |
HTML_str = (
|
49 |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
50 |
" </center>"
|
51 |
)
|
52 |
-
return
|
53 |
|
54 |
def download_yt_audio(yt_url, filename):
|
55 |
info_loader = youtube_dl.YoutubeDL()
|
@@ -70,8 +121,8 @@ def download_yt_audio(yt_url, filename):
|
|
70 |
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
71 |
|
72 |
if file_length_s > YT_LENGTH_LIMIT_S:
|
73 |
-
yt_length_limit_hms = time.strftime("%
|
74 |
-
file_length_hms = time.strftime("%
|
75 |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
76 |
|
77 |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
@@ -82,31 +133,48 @@ def download_yt_audio(yt_url, filename):
|
|
82 |
except youtube_dl.utils.ExtractorError as err:
|
83 |
raise gr.Error(str(err))
|
84 |
|
85 |
-
def transcribe(inputs_path, task, use_demucs, dataset_name, oauth_token, progress=gr.Progress()):
|
86 |
-
if inputs_path is None:
|
87 |
-
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
88 |
-
if dataset_name is None:
|
89 |
-
raise gr.Error("No dataset name submitted! Please submit a dataset name. Should be in the format: <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.")
|
90 |
|
91 |
-
|
92 |
-
|
93 |
-
return ["transcripts will appear here"]
|
94 |
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
96 |
current_step = 0
|
97 |
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
current_step += 1
|
99 |
-
progress((current_step, total_step), desc="
|
100 |
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
102 |
|
103 |
-
|
|
|
104 |
|
105 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
|
107 |
current_step += 1
|
108 |
progress((current_step, total_step), desc="Merge chunks.")
|
109 |
-
chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs,
|
110 |
|
111 |
current_step += 1
|
112 |
progress((current_step, total_step), desc="Create dataset.")
|
@@ -114,12 +182,16 @@ def transcribe(inputs_path, task, use_demucs, dataset_name, oauth_token, progres
|
|
114 |
transcripts = []
|
115 |
audios = []
|
116 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
117 |
-
for i,
|
|
|
|
|
118 |
arr = chunk["audio"]
|
119 |
path = os.path.join(tmpdirname, f"{i}.wav")
|
120 |
-
wavfile.write(path,
|
121 |
|
122 |
if use_demucs == "separate-audio":
|
|
|
|
|
123 |
path = separate_vocal(path)
|
124 |
|
125 |
audios.append(path)
|
@@ -131,26 +203,75 @@ def transcribe(inputs_path, task, use_demucs, dataset_name, oauth_token, progres
|
|
131 |
progress((current_step, total_step), desc="Push dataset.")
|
132 |
dataset.push_to_hub(dataset_name, token=oauth_token.token if oauth_token else oauth_token)
|
133 |
|
134 |
-
return [[transcript] for transcript in transcripts], text
|
135 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
136 |
with gr.Blocks(css=css) as demo:
|
137 |
with gr.Row():
|
138 |
gr.LoginButton()
|
139 |
gr.LogoutButton()
|
140 |
|
141 |
with gr.Tab("YouTube"):
|
142 |
-
gr.Markdown("Create your own TTS dataset using
|
143 |
-
gr.Markdown(
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
|
148 |
with gr.Row():
|
149 |
with gr.Column():
|
150 |
audio_youtube = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
|
151 |
task_youtube = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
152 |
-
cleaning_youtube = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not
|
153 |
-
textbox_youtube = gr.Textbox(lines=1, placeholder="Place your new dataset name here. Should be in the format: <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.", label="Dataset name")
|
154 |
|
155 |
with gr.Row():
|
156 |
clear_youtube = gr.ClearButton([audio_youtube, task_youtube, cleaning_youtube, textbox_youtube])
|
@@ -158,22 +279,22 @@ with gr.Blocks(css=css) as demo:
|
|
158 |
|
159 |
with gr.Column():
|
160 |
html_youtube = gr.HTML()
|
161 |
-
dataset_youtube = gr.Dataset(label="Transcribed samples.",
|
162 |
transcript_youtube = gr.Textbox(label="Transcription")
|
163 |
|
164 |
with gr.Tab("Microphone or Audio file"):
|
165 |
gr.Markdown("Create your own TTS dataset using your own recordings", elem_id="intro")
|
166 |
-
gr.Markdown(
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
with gr.Row():
|
172 |
with gr.Column():
|
173 |
audio_file = gr.Audio(type="filepath")
|
174 |
task_file = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
175 |
-
cleaning_file = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not
|
176 |
-
textbox_file = gr.Textbox(lines=1, placeholder="Place your new dataset name here. Should be in the format: <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.", label="Dataset name")
|
177 |
|
178 |
with gr.Row():
|
179 |
clear_file = gr.ClearButton([audio_file, task_file, cleaning_file, textbox_file])
|
@@ -183,7 +304,9 @@ with gr.Blocks(css=css) as demo:
|
|
183 |
dataset_file = gr.Dataset(label="Transcribed samples.", components=["text"], headers=["Transcripts"], samples=[["transcripts will appear here"]])
|
184 |
transcript_file = gr.Textbox(label="Transcription")
|
185 |
|
|
|
|
|
186 |
submit_file.click(transcribe, inputs=[audio_file, task_file, cleaning_file, textbox_file], outputs=[dataset_file, transcript_file])
|
187 |
-
submit_youtube.click(
|
188 |
|
189 |
-
demo.launch(debug=True)
|
|
|
|
|
1 |
import torch
|
2 |
+
|
3 |
+
import gradio as gr
|
4 |
import yt_dlp as youtube_dl
|
5 |
import numpy as np
|
6 |
from datasets import Dataset, Audio
|
7 |
from scipy.io import wavfile
|
8 |
+
|
9 |
from transformers import pipeline
|
10 |
+
from transformers.pipelines.audio_utils import ffmpeg_read
|
11 |
+
|
12 |
import tempfile
|
13 |
+
import os
|
14 |
import time
|
15 |
+
import demucs.api
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
MODEL_NAME = "openai/whisper-large-v3" # "patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram" #
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
18 |
DEMUCS_MODEL_NAME = "htdemucs_ft"
|
19 |
BATCH_SIZE = 8
|
20 |
FILE_LIMIT_MB = 1000
|
|
|
29 |
device=device,
|
30 |
)
|
31 |
|
32 |
+
separator = demucs.api.Separator(model = DEMUCS_MODEL_NAME, )
|
33 |
|
34 |
def separate_vocal(path):
|
35 |
origin, separated = separator.separate_audio_file(path)
|
36 |
demucs.api.save_audio(separated["vocals"], path, samplerate=separator.samplerate)
|
37 |
return path
|
38 |
|
39 |
+
|
40 |
+
def transcribe(inputs_path, task, use_demucs, dataset_name, oauth_token: gr.OAuthToken | None, progress=gr.Progress()):
|
41 |
+
if inputs_path is None:
|
42 |
+
raise gr.Error("No audio file submitted! Please upload or record an audio file before submitting your request.")
|
43 |
+
if dataset_name is None:
|
44 |
+
raise gr.Error("No dataset name submitted! Please submit a dataset name. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.")
|
45 |
+
|
46 |
+
if oauth_token is None:
|
47 |
+
gr.Warning("Make sure to click and login before using this demo.")
|
48 |
+
return [["transcripts will appear here"]], ""
|
49 |
+
|
50 |
+
total_step = 4
|
51 |
+
current_step = 0
|
52 |
+
|
53 |
+
current_step += 1
|
54 |
+
progress((current_step, total_step), desc="Transcribe using Whisper.")
|
55 |
+
|
56 |
+
sampling_rate, inputs = wavfile.read(inputs_path)
|
57 |
+
|
58 |
+
out = pipe(inputs_path, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
|
59 |
+
|
60 |
+
text = out["text"]
|
61 |
+
|
62 |
+
current_step += 1
|
63 |
+
progress((current_step, total_step), desc="Merge chunks.")
|
64 |
+
chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, sampling_rate)
|
65 |
+
|
66 |
+
current_step += 1
|
67 |
+
progress((current_step, total_step), desc="Create dataset.")
|
68 |
+
|
69 |
+
|
70 |
+
transcripts = []
|
71 |
+
audios = []
|
72 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
73 |
+
for i,chunk in enumerate(progress.tqdm(chunks, desc="Creating dataset (and clean audio if asked for)")):
|
74 |
+
|
75 |
+
# TODO: make sure 1D or 2D?
|
76 |
+
arr = chunk["audio"]
|
77 |
+
path = os.path.join(tmpdirname, f"{i}.wav")
|
78 |
+
wavfile.write(path, sampling_rate, arr)
|
79 |
+
|
80 |
+
if use_demucs == "separate-audio":
|
81 |
+
# use demucs tp separate vocals
|
82 |
+
print(f"Separating vocals #{i}")
|
83 |
+
path = separate_vocal(path)
|
84 |
+
|
85 |
+
audios.append(path)
|
86 |
+
transcripts.append(chunk["text"])
|
87 |
+
|
88 |
+
dataset = Dataset.from_dict({"audio": audios, "text": transcripts}).cast_column("audio", Audio())
|
89 |
+
|
90 |
+
current_step += 1
|
91 |
+
progress((current_step, total_step), desc="Push dataset.")
|
92 |
+
dataset.push_to_hub(dataset_name, token=oauth_token.token if oauth_token else oauth_token)
|
93 |
+
|
94 |
+
return [[transcript] for transcript in transcripts], text
|
95 |
+
|
96 |
+
|
97 |
def _return_yt_html_embed(yt_url):
|
98 |
video_id = yt_url.split("?v=")[-1]
|
99 |
HTML_str = (
|
100 |
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
101 |
" </center>"
|
102 |
)
|
103 |
+
return HTML_str
|
104 |
|
105 |
def download_yt_audio(yt_url, filename):
|
106 |
info_loader = youtube_dl.YoutubeDL()
|
|
|
121 |
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
122 |
|
123 |
if file_length_s > YT_LENGTH_LIMIT_S:
|
124 |
+
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
125 |
+
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
126 |
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
127 |
|
128 |
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
|
|
133 |
except youtube_dl.utils.ExtractorError as err:
|
134 |
raise gr.Error(str(err))
|
135 |
|
|
|
|
|
|
|
|
|
|
|
136 |
|
137 |
+
def yt_transcribe(yt_url, task, use_demucs, dataset_name, oauth_token: gr.OAuthToken | None, max_filesize=75.0, dataset_sampling_rate = 24000,
|
138 |
+
progress=gr.Progress()):
|
|
|
139 |
|
140 |
+
if yt_url is None:
|
141 |
+
raise gr.Error("No youtube link submitted! Please put a working link.")
|
142 |
+
if dataset_name is None:
|
143 |
+
raise gr.Error("No dataset name submitted! Please submit a dataset name. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.")
|
144 |
+
|
145 |
+
total_step = 5
|
146 |
current_step = 0
|
147 |
|
148 |
+
html_embed_str = _return_yt_html_embed(yt_url)
|
149 |
+
|
150 |
+
if oauth_token is None:
|
151 |
+
gr.Warning("Make sure to click and login before using this demo.")
|
152 |
+
return html_embed_str, [["transcripts will appear here"]], ""
|
153 |
+
|
154 |
current_step += 1
|
155 |
+
progress((current_step, total_step), desc="Load video.")
|
156 |
|
157 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
158 |
+
filepath = os.path.join(tmpdirname, "video.mp4")
|
159 |
+
|
160 |
+
download_yt_audio(yt_url, filepath)
|
161 |
+
with open(filepath, "rb") as f:
|
162 |
+
inputs_path = f.read()
|
163 |
|
164 |
+
inputs = ffmpeg_read(inputs_path, pipe.feature_extractor.sampling_rate)
|
165 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
166 |
|
167 |
+
current_step += 1
|
168 |
+
progress((current_step, total_step), desc="Transcribe using Whisper.")
|
169 |
+
out = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
|
170 |
+
|
171 |
+
text = out["text"]
|
172 |
+
|
173 |
+
inputs = ffmpeg_read(inputs_path, dataset_sampling_rate)
|
174 |
|
175 |
current_step += 1
|
176 |
progress((current_step, total_step), desc="Merge chunks.")
|
177 |
+
chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, dataset_sampling_rate)
|
178 |
|
179 |
current_step += 1
|
180 |
progress((current_step, total_step), desc="Create dataset.")
|
|
|
182 |
transcripts = []
|
183 |
audios = []
|
184 |
with tempfile.TemporaryDirectory() as tmpdirname:
|
185 |
+
for i,chunk in enumerate(progress.tqdm(chunks, desc="Creating dataset (and clean audio if asked for).")):
|
186 |
+
|
187 |
+
# TODO: make sure 1D or 2D?
|
188 |
arr = chunk["audio"]
|
189 |
path = os.path.join(tmpdirname, f"{i}.wav")
|
190 |
+
wavfile.write(path, dataset_sampling_rate, arr)
|
191 |
|
192 |
if use_demucs == "separate-audio":
|
193 |
+
# use demucs tp separate vocals
|
194 |
+
print(f"Separating vocals #{i}")
|
195 |
path = separate_vocal(path)
|
196 |
|
197 |
audios.append(path)
|
|
|
203 |
progress((current_step, total_step), desc="Push dataset.")
|
204 |
dataset.push_to_hub(dataset_name, token=oauth_token.token if oauth_token else oauth_token)
|
205 |
|
|
|
206 |
|
207 |
+
return html_embed_str, [[transcript] for transcript in transcripts], text
|
208 |
+
|
209 |
+
|
210 |
+
def naive_postprocess_whisper_chunks(chunks, audio_array, sampling_rate, stop_chars = ".!:;?", min_duration = 5):
|
211 |
+
# merge chunks as long as merged audio duration is lower than min_duration and that a stop character is not met
|
212 |
+
# return list of dictionnaries (text, audio)
|
213 |
+
# min duration is in seconds
|
214 |
+
min_duration = int(min_duration * sampling_rate)
|
215 |
+
|
216 |
+
|
217 |
+
new_chunks = []
|
218 |
+
while chunks:
|
219 |
+
current_chunk = chunks.pop(0)
|
220 |
+
|
221 |
+
begin, end = current_chunk["timestamp"]
|
222 |
+
begin, end = int(begin*sampling_rate), int(end*sampling_rate)
|
223 |
+
|
224 |
+
current_dur = end-begin
|
225 |
+
|
226 |
+
text = current_chunk["text"]
|
227 |
+
|
228 |
+
|
229 |
+
chunk_to_concat = [audio_array[begin:end]]
|
230 |
+
while chunks and (text[-1] not in stop_chars or (current_dur<min_duration)):
|
231 |
+
ch = chunks.pop(0)
|
232 |
+
begin, end = ch["timestamp"]
|
233 |
+
begin, end = int(begin*sampling_rate), int(end*sampling_rate)
|
234 |
+
current_dur += end-begin
|
235 |
+
|
236 |
+
text = "".join([text, ch["text"]])
|
237 |
+
|
238 |
+
# TODO: add silence ?
|
239 |
+
chunk_to_concat.append(audio_array[begin:end])
|
240 |
+
|
241 |
+
|
242 |
+
new_chunks.append({
|
243 |
+
"text": text.strip(),
|
244 |
+
"audio": np.concatenate(chunk_to_concat),
|
245 |
+
})
|
246 |
+
print(f"LENGTH CHUNK #{len(new_chunks)}: {current_dur/sampling_rate}s")
|
247 |
+
|
248 |
+
return new_chunks
|
249 |
+
|
250 |
+
css = """
|
251 |
+
#intro{
|
252 |
+
max-width: 100%;
|
253 |
+
text-align: center;
|
254 |
+
margin: 0 auto;
|
255 |
+
}
|
256 |
+
"""
|
257 |
with gr.Blocks(css=css) as demo:
|
258 |
with gr.Row():
|
259 |
gr.LoginButton()
|
260 |
gr.LogoutButton()
|
261 |
|
262 |
with gr.Tab("YouTube"):
|
263 |
+
gr.Markdown("Create your own TTS dataset using Youtube", elem_id="intro")
|
264 |
+
gr.Markdown(
|
265 |
+
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it."
|
266 |
+
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to automatically transcribe audio files"
|
267 |
+
" of arbitrary length. It then merge chunks of audio and push it to the hub."
|
268 |
+
)
|
269 |
with gr.Row():
|
270 |
with gr.Column():
|
271 |
audio_youtube = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
|
272 |
task_youtube = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
273 |
+
cleaning_youtube = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="separate-audio")
|
274 |
+
textbox_youtube = gr.Textbox(lines=1, placeholder="Place your new dataset name here. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.", label="Dataset name")
|
275 |
|
276 |
with gr.Row():
|
277 |
clear_youtube = gr.ClearButton([audio_youtube, task_youtube, cleaning_youtube, textbox_youtube])
|
|
|
279 |
|
280 |
with gr.Column():
|
281 |
html_youtube = gr.HTML()
|
282 |
+
dataset_youtube = gr.Dataset(label="Transcribed samples.",components=["text"], headers=["Transcripts"], samples=[["transcripts will appear here"]])
|
283 |
transcript_youtube = gr.Textbox(label="Transcription")
|
284 |
|
285 |
with gr.Tab("Microphone or Audio file"):
|
286 |
gr.Markdown("Create your own TTS dataset using your own recordings", elem_id="intro")
|
287 |
+
gr.Markdown(
|
288 |
+
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it."
|
289 |
+
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and π€ Transformers to automatically transcribe audio files"
|
290 |
+
" of arbitrary length. It then merge chunks of audio and push it to the hub."
|
291 |
+
)
|
292 |
with gr.Row():
|
293 |
with gr.Column():
|
294 |
audio_file = gr.Audio(type="filepath")
|
295 |
task_file = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
296 |
+
cleaning_file = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="separate-audio")
|
297 |
+
textbox_file = gr.Textbox(lines=1, placeholder="Place your new dataset name here. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.", label="Dataset name")
|
298 |
|
299 |
with gr.Row():
|
300 |
clear_file = gr.ClearButton([audio_file, task_file, cleaning_file, textbox_file])
|
|
|
304 |
dataset_file = gr.Dataset(label="Transcribed samples.", components=["text"], headers=["Transcripts"], samples=[["transcripts will appear here"]])
|
305 |
transcript_file = gr.Textbox(label="Transcription")
|
306 |
|
307 |
+
|
308 |
+
|
309 |
submit_file.click(transcribe, inputs=[audio_file, task_file, cleaning_file, textbox_file], outputs=[dataset_file, transcript_file])
|
310 |
+
submit_youtube.click(yt_transcribe, inputs=[audio_youtube, task_youtube, cleaning_youtube, textbox_youtube], outputs=[html_youtube, dataset_youtube, transcript_youtube])
|
311 |
|
312 |
+
demo.launch(debug=True)
|