Update app.py
Browse files
app.py
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
-
import
|
4 |
import numpy as np
|
5 |
from datasets import Dataset, Audio
|
6 |
from scipy.io import wavfile
|
@@ -13,47 +13,240 @@ import os
|
|
13 |
import time
|
14 |
import demucs.api
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
+
import youtube_dl
|
4 |
import numpy as np
|
5 |
from datasets import Dataset, Audio
|
6 |
from scipy.io import wavfile
|
|
|
13 |
import time
|
14 |
import demucs.api
|
15 |
|
16 |
+
MODEL_NAME = "openai/whisper-large-v3" # "patrickvonplaten/wav2vec2-large-960h-lv60-self-4-gram"
|
17 |
+
DEMUCS_MODEL_NAME = "htdemucs_ft"
|
18 |
+
BATCH_SIZE = 8
|
19 |
+
FILE_LIMIT_MB = 1000
|
20 |
+
YT_LENGTH_LIMIT_S = 3600 # limit to 1 hour YouTube files
|
21 |
+
|
22 |
+
device = 0 if torch.cuda.is_available() else "cpu"
|
23 |
+
|
24 |
+
pipe = pipeline(
|
25 |
+
task="automatic-speech-recognition",
|
26 |
+
model=MODEL_NAME,
|
27 |
+
chunk_length_s=30,
|
28 |
+
device=device,
|
29 |
+
)
|
30 |
+
|
31 |
+
separator = demucs.api.Separator(model=DEMUCS_MODEL_NAME, )
|
32 |
+
|
33 |
+
def separate_vocal(path):
|
34 |
+
origin, separated = separator.separate_audio_file(path)
|
35 |
+
demucs.api.save_audio(separated["vocals"], path, samplerate=separator.samplerate)
|
36 |
+
return path
|
37 |
+
|
38 |
+
def _return_yt_html_embed(yt_url):
|
39 |
+
video_id = yt_url.split("?v=")[-1]
|
40 |
+
HTML_str = (
|
41 |
+
f'<center> <iframe width="500" height="320" src="https://www.youtube.com/embed/{video_id}"> </iframe>'
|
42 |
+
" </center>"
|
43 |
+
)
|
44 |
+
return gr.HTML(value=HTML_str)
|
45 |
+
|
46 |
+
def download_yt_audio(yt_url, filename):
|
47 |
+
info_loader = youtube_dl.YoutubeDL()
|
48 |
+
|
49 |
+
try:
|
50 |
+
info = info_loader.extract_info(yt_url, download=False)
|
51 |
+
except youtube_dl.utils.DownloadError as err:
|
52 |
+
raise gr.Error(str(err))
|
53 |
+
|
54 |
+
file_length = info["duration_string"]
|
55 |
+
file_h_m_s = file_length.split(":")
|
56 |
+
file_h_m_s = [int(sub_length) for sub_length in file_h_m_s]
|
57 |
+
|
58 |
+
if len(file_h_m_s) == 1:
|
59 |
+
file_h_m_s.insert(0, 0)
|
60 |
+
if len(file_h_m_s) == 2:
|
61 |
+
file_h_m_s.insert(0, 0)
|
62 |
+
file_length_s = file_h_m_s[0] * 3600 + file_h_m_s[1] * 60 + file_h_m_s[2]
|
63 |
+
|
64 |
+
if file_length_s > YT_LENGTH_LIMIT_S:
|
65 |
+
yt_length_limit_hms = time.strftime("%HH:%MM:%SS", time.gmtime(YT_LENGTH_LIMIT_S))
|
66 |
+
file_length_hms = time.strftime("%HH:%MM:%SS", time.gmtime(file_length_s))
|
67 |
+
raise gr.Error(f"Maximum YouTube length is {yt_length_limit_hms}, got {file_length_hms} YouTube video.")
|
68 |
+
|
69 |
+
ydl_opts = {"outtmpl": filename, "format": "worstvideo[ext=mp4]+bestaudio[ext=m4a]/best[ext=mp4]/best"}
|
70 |
+
|
71 |
+
with youtube_dl.YoutubeDL(ydl_opts) as ydl:
|
72 |
+
try:
|
73 |
+
ydl.download([yt_url])
|
74 |
+
except youtube_dl.utils.ExtractorError as err:
|
75 |
+
raise gr.Error(str(err))
|
76 |
+
|
77 |
+
def yt_transcribe(yt_url, task, use_demucs, dataset_name, oauth_token: gr.OAuthToken | None, max_filesize=75.0, dataset_sampling_rate = 24000,
|
78 |
+
progress=gr.Progress()):
|
79 |
+
|
80 |
+
if yt_url is None:
|
81 |
+
raise gr.Error("No youtube link submitted! Please put a working link.")
|
82 |
+
if dataset_name is None:
|
83 |
+
raise gr.Error("No dataset name submitted! Please submit a dataset name. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.")
|
84 |
+
|
85 |
+
total_step = 5
|
86 |
+
current_step = 0
|
87 |
+
|
88 |
+
HTML_str = _return_yt_html_embed(yt_url)
|
89 |
+
|
90 |
+
if oauth_token is None:
|
91 |
+
gr.Warning("Make sure to click and login before using this demo.")
|
92 |
+
return HTML_str, [["transcripts will appear here"]], ""
|
93 |
+
|
94 |
+
current_step += 1
|
95 |
+
progress((current_step, total_step), desc="Load video.")
|
96 |
+
|
97 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
98 |
+
filepath = os.path.join(tmpdirname, "video.mp4")
|
99 |
+
|
100 |
+
download_yt_audio(yt_url, filepath)
|
101 |
+
with open(filepath, "rb") as f:
|
102 |
+
inputs_path = f.read()
|
103 |
+
|
104 |
+
inputs = ffmpeg_read(inputs_path, pipe.feature_extractor.sampling_rate)
|
105 |
+
inputs = {"array": inputs, "sampling_rate": pipe.feature_extractor.sampling_rate}
|
106 |
+
|
107 |
+
current_step += 1
|
108 |
+
progress((current_step, total_step), desc="Transcribe using Whisper.")
|
109 |
+
out = pipe(inputs, batch_size=BATCH_SIZE, generate_kwargs={"task": task}, return_timestamps=True)
|
110 |
+
|
111 |
+
text = out["text"]
|
112 |
+
|
113 |
+
inputs = ffmpeg_read(inputs_path, dataset_sampling_rate)
|
114 |
+
|
115 |
+
current_step += 1
|
116 |
+
progress((current_step, total_step), desc="Merge chunks.")
|
117 |
+
chunks = naive_postprocess_whisper_chunks(out["chunks"], inputs, dataset_sampling_rate)
|
118 |
+
|
119 |
+
current_step += 1
|
120 |
+
progress((current_step, total_step), desc="Create dataset.")
|
121 |
+
|
122 |
+
transcripts = []
|
123 |
+
audios = []
|
124 |
+
with tempfile.TemporaryDirectory() as tmpdirname:
|
125 |
+
for i,chunk in enumerate(progress.tqdm(chunks, desc="Creating dataset (and clean audio if asked for).")):
|
126 |
+
|
127 |
+
# TODO: make sure 1D or 2D?
|
128 |
+
arr = chunk["audio"]
|
129 |
+
path = os.path.join(tmpdirname, f"{i}.wav")
|
130 |
+
wavfile.write(path, dataset_sampling_rate, arr)
|
131 |
+
|
132 |
+
if use_demucs == "separate-audio":
|
133 |
+
# use demucs tp separate vocals
|
134 |
+
print(f"Separating vocals #{i}")
|
135 |
+
path = separate_vocal(path)
|
136 |
+
|
137 |
+
audios.append(path)
|
138 |
+
transcripts.append(chunk["text"])
|
139 |
+
|
140 |
+
dataset = Dataset.from_dict({"audio": audios, "text": transcripts}).cast_column("audio", Audio())
|
141 |
+
|
142 |
+
current_step += 1
|
143 |
+
progress((current_step, total_step), desc="Push dataset.")
|
144 |
+
dataset.push_to_hub(dataset_name, token=oauth_token.token if oauth_token else oauth_token)
|
145 |
+
|
146 |
+
|
147 |
+
return HTML_str, [[transcript] for transcript in transcripts], text
|
148 |
+
|
149 |
+
def naive_postprocess_whisper_chunks(chunks, audio_array, sampling_rate, stop_chars = ".!:;?", min_duration = 5):
|
150 |
+
# merge chunks as long as merged audio duration is lower than min_duration and that a stop character is not met
|
151 |
+
# return list of dictionnaries (text, audio)
|
152 |
+
# min duration is in seconds
|
153 |
+
min_duration = int(min_duration * sampling_rate)
|
154 |
+
|
155 |
+
|
156 |
+
new_chunks = []
|
157 |
+
while chunks:
|
158 |
+
current_chunk = chunks.pop(0)
|
159 |
+
|
160 |
+
begin, end = current_chunk["timestamp"]
|
161 |
+
begin, end = int(begin*sampling_rate), int(end*sampling_rate)
|
162 |
+
|
163 |
+
current_dur = end-begin
|
164 |
+
|
165 |
+
text = current_chunk["text"]
|
166 |
+
|
167 |
+
|
168 |
+
chunk_to_concat = [audio_array[begin:end]]
|
169 |
+
while chunks and (text[-1] not in stop_chars or (current_dur<min_duration)):
|
170 |
+
ch = chunks.pop(0)
|
171 |
+
begin, end = ch["timestamp"]
|
172 |
+
begin, end = int(begin*sampling_rate), int(end*sampling_rate)
|
173 |
+
current_dur += end-begin
|
174 |
+
|
175 |
+
text = "".join([text, ch["text"]])
|
176 |
+
|
177 |
+
# TODO: add silence ?
|
178 |
+
chunk_to_concat.append(audio_array[begin:end])
|
179 |
+
|
180 |
+
|
181 |
+
new_chunks.append({
|
182 |
+
"text": text.strip(),
|
183 |
+
"audio": np.concatenate(chunk_to_concat),
|
184 |
+
})
|
185 |
+
print(f"LENGTH CHUNK #{len(new_chunks)}: {current_dur/sampling_rate}s")
|
186 |
+
|
187 |
+
return new_chunks
|
188 |
+
|
189 |
+
css = """
|
190 |
+
#intro{
|
191 |
+
max-width: 100%;
|
192 |
+
text-align: center;
|
193 |
+
margin: 0 auto;
|
194 |
+
}
|
195 |
+
"""
|
196 |
+
with gr.Blocks(css=css) as demo:
|
197 |
+
with gr.Row():
|
198 |
+
gr.LoginButton()
|
199 |
+
gr.LogoutButton()
|
200 |
+
|
201 |
+
with gr.Tab("YouTube"):
|
202 |
+
gr.Markdown("Create your own TTS dataset using Youtube", elem_id="intro")
|
203 |
+
gr.Markdown(
|
204 |
+
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it."
|
205 |
+
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files"
|
206 |
+
" of arbitrary length. It then merge chunks of audio and push it to the hub."
|
207 |
+
)
|
208 |
+
with gr.Row():
|
209 |
+
with gr.Column():
|
210 |
+
audio_youtube = gr.Textbox(lines=1, placeholder="Paste the URL to a YouTube video here", label="YouTube URL")
|
211 |
+
task_youtube = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
212 |
+
cleaning_youtube = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="separate-audio")
|
213 |
+
textbox_youtube = gr.Textbox(lines=1, placeholder="Place your new dataset name here. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.", label="Dataset name")
|
214 |
+
|
215 |
+
with gr.Row():
|
216 |
+
clear_youtube = gr.ClearButton([audio_youtube, task_youtube, cleaning_youtube, textbox_youtube])
|
217 |
+
submit_youtube = gr.Button("Submit")
|
218 |
+
|
219 |
+
with gr.Column():
|
220 |
+
html_youtube = gr.HTML()
|
221 |
+
dataset_youtube = gr.Dataset(label="Transcribed samples.", components=["text"], headers=["Transcripts"], samples=[["transcripts will appear here"]])
|
222 |
+
transcript_youtube = gr.Textbox(label="Transcription")
|
223 |
+
|
224 |
+
with gr.Tab("Microphone or Audio file"):
|
225 |
+
gr.Markdown("Create your own TTS dataset using your own recordings", elem_id="intro")
|
226 |
+
gr.Markdown(
|
227 |
+
"This demo allows use to create a text-to-speech dataset from an input audio snippet and push it to hub to keep track of it."
|
228 |
+
f"Demo uses the checkpoint [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) and 🤗 Transformers to automatically transcribe audio files"
|
229 |
+
" of arbitrary length. It then merge chunks of audio and push it to the hub."
|
230 |
+
)
|
231 |
+
with gr.Row():
|
232 |
+
with gr.Column():
|
233 |
+
audio_file = gr.Audio(type="filepath")
|
234 |
+
task_file = gr.Radio(["transcribe", "translate"], label="Task", value="transcribe")
|
235 |
+
cleaning_file = gr.Radio(["no-post-processing", "separate-audio"], label="Audio separation and cleaning (takes longer - use it if your samples are not cleaned (background noise and music))", value="no-post-processing")
|
236 |
+
textbox_file = gr.Textbox(lines=1, placeholder="Place your new dataset name here. Should be in the format : <user>/<dataset_name> or <org>/<dataset_name>. Also accepts <dataset_name>, which will default to the namespace of the logged-in user.", label="Dataset name")
|
237 |
+
|
238 |
+
with gr.Row():
|
239 |
+
clear_file = gr.ClearButton([audio_file, task_file, cleaning_file, textbox_file])
|
240 |
+
submit_file = gr.Button("Submit")
|
241 |
+
|
242 |
+
with gr.Column():
|
243 |
+
dataset_file = gr.Dataset(label="Transcribed samples.", components=["text"], headers=["Transcripts"], samples=[["transcripts will appear here"]])
|
244 |
+
transcript_file = gr.Textbox(label="Transcription")
|
245 |
+
|
246 |
+
|
247 |
+
|
248 |
+
submit_file.click(transcribe, inputs=[audio_file, task_file, cleaning_file, textbox_file], outputs=[dataset_file, transcript_file])
|
249 |
+
submit_youtube.click(yt_transcribe, inputs=[audio_youtube, task_youtube, cleaning_youtube, textbox_youtube], outputs=[html_youtube, dataset_youtube, transcript_youtube])
|
250 |
+
|
251 |
+
demo.launch(debug=True)
|
252 |
+
Confío en que
|