yolov8-Custom / app.py
owaiskha9654's picture
Update app.py
3ee6757
import gradio as gr
import torch
from sahi.prediction import ObjectPrediction
from sahi.utils.cv import visualize_object_predictions, read_image
from ultralyticsplus import YOLO
# Images
torch.hub.download_url_to_file('https://raw.githubusercontent.com/Owaiskhan9654/test_test/main/20.jpeg', '20.jpeg')
torch.hub.download_url_to_file('https://raw.githubusercontent.com/Owaiskhan9654/test_test/main/30.jpeg', '30.jpeg')
torch.hub.download_url_to_file('https://raw.githubusercontent.com/Owaiskhan9654/test_test/main/17.jpeg', '17.jpeg')
def yolov8_inference(
image: gr.inputs.Image = None,
model_path: gr.inputs.Dropdown = None,
image_size: gr.inputs.Slider = 224,
conf_threshold: gr.inputs.Slider = 0.25,
iou_threshold: gr.inputs.Slider = 0.45,
):
"""
YOLOv8 inference function
Args:
image: Input image
model_path: Path to the model
image_size: Image size
conf_threshold: Confidence threshold
iou_threshold: IOU threshold
Returns:
Rendered image
"""
model = YOLO(model_path)
model.conf = conf_threshold
model.iou = iou_threshold
results = model.predict(image, imgsz=image_size, )#return_outputs=True)
print("Outputs", results[0].numpy())
# data = np.array(results[0].numpy(), dtype=np.float32)
print("Boxexes",results[0].boxes.boxes)
object_prediction_list = []
outputs = results[0].boxes.boxes.numpy()
if len(outputs)!=0:
for pred in outputs:
print(type(pred),pred)
x1, y1, x2, y2 = (
int(pred[0]),
int(pred[1]),
int(pred[2]),
int(pred[3]),
)
bbox = [x1, y1, x2, y2]
score = pred[4]
category_name = model.model.names[int(pred[5])]
category_id = pred[5]
object_prediction = ObjectPrediction(
bbox=bbox,
category_id=int(category_id),
score=score,
category_name=category_name,
)
object_prediction_list.append(object_prediction)
image = read_image(image)
output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list)
return output_image['image']
inputs = [
gr.inputs.Image(type="filepath", label="Input Image"),
gr.inputs.Dropdown(["owaiskha9654/yolov8-custom_objects", "owaiskha9654/yolov8-custom_objects"],
default="owaiskha9654/yolov8-custom_objects", label="Model"),
gr.inputs.Slider(minimum=224, maximum=224, default=224, step=32, label="Image Size"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"),
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"),
]
outputs = gr.outputs.Image(type="filepath", label="Output Image")
title = "Custom YOLOv8: Trained on Industrial Equipments predictions"
examples = [['20.jpeg', 'owaiskha9654/yolov8-custom_objects', 224, 0.25, 0.45], ['30.jpeg', 'owaiskha9654/yolov8-custom_objects', 224, 0.25, 0.45],]# ['17.jpeg', 'owaiskha9654/yolov8-custom_objects', 1280, 0.25, 0.45]]
demo_app = gr.Interface(
fn=yolov8_inference,
inputs=inputs,
outputs=outputs,
title=title,
examples=examples,
cache_examples=False,
theme='huggingface',
)
demo_app.launch(debug=True, enable_queue=False)