Spaces:
Runtime error
Runtime error
import gradio as gr | |
import torch | |
from sahi.prediction import ObjectPrediction | |
from sahi.utils.cv import visualize_object_predictions, read_image | |
from ultralyticsplus import YOLO | |
# Images | |
torch.hub.download_url_to_file('https://raw.githubusercontent.com/Owaiskhan9654/test_test/main/20.jpeg', '20.jpeg') | |
torch.hub.download_url_to_file('https://raw.githubusercontent.com/Owaiskhan9654/test_test/main/30.jpeg', '30.jpeg') | |
torch.hub.download_url_to_file('https://raw.githubusercontent.com/Owaiskhan9654/test_test/main/17.jpeg', '17.jpeg') | |
def yolov8_inference( | |
image: gr.inputs.Image = None, | |
model_path: gr.inputs.Dropdown = None, | |
image_size: gr.inputs.Slider = 224, | |
conf_threshold: gr.inputs.Slider = 0.25, | |
iou_threshold: gr.inputs.Slider = 0.45, | |
): | |
""" | |
YOLOv8 inference function | |
Args: | |
image: Input image | |
model_path: Path to the model | |
image_size: Image size | |
conf_threshold: Confidence threshold | |
iou_threshold: IOU threshold | |
Returns: | |
Rendered image | |
""" | |
model = YOLO(model_path) | |
model.conf = conf_threshold | |
model.iou = iou_threshold | |
results = model.predict(image, imgsz=image_size, )#return_outputs=True) | |
print("Outputs", results[0].numpy()) | |
# data = np.array(results[0].numpy(), dtype=np.float32) | |
print("Boxexes",results[0].boxes.boxes) | |
object_prediction_list = [] | |
outputs = results[0].boxes.boxes.numpy() | |
if len(outputs)!=0: | |
for pred in outputs: | |
print(type(pred),pred) | |
x1, y1, x2, y2 = ( | |
int(pred[0]), | |
int(pred[1]), | |
int(pred[2]), | |
int(pred[3]), | |
) | |
bbox = [x1, y1, x2, y2] | |
score = pred[4] | |
category_name = model.model.names[int(pred[5])] | |
category_id = pred[5] | |
object_prediction = ObjectPrediction( | |
bbox=bbox, | |
category_id=int(category_id), | |
score=score, | |
category_name=category_name, | |
) | |
object_prediction_list.append(object_prediction) | |
image = read_image(image) | |
output_image = visualize_object_predictions(image=image, object_prediction_list=object_prediction_list) | |
return output_image['image'] | |
inputs = [ | |
gr.inputs.Image(type="filepath", label="Input Image"), | |
gr.inputs.Dropdown(["owaiskha9654/yolov8-custom_objects", "owaiskha9654/yolov8-custom_objects"], | |
default="owaiskha9654/yolov8-custom_objects", label="Model"), | |
gr.inputs.Slider(minimum=224, maximum=224, default=224, step=32, label="Image Size"), | |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25, step=0.05, label="Confidence Threshold"), | |
gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45, step=0.05, label="IOU Threshold"), | |
] | |
outputs = gr.outputs.Image(type="filepath", label="Output Image") | |
title = "Custom YOLOv8: Trained on Industrial Equipments predictions" | |
examples = [['20.jpeg', 'owaiskha9654/yolov8-custom_objects', 224, 0.25, 0.45], ['30.jpeg', 'owaiskha9654/yolov8-custom_objects', 224, 0.25, 0.45],]# ['17.jpeg', 'owaiskha9654/yolov8-custom_objects', 1280, 0.25, 0.45]] | |
demo_app = gr.Interface( | |
fn=yolov8_inference, | |
inputs=inputs, | |
outputs=outputs, | |
title=title, | |
examples=examples, | |
cache_examples=False, | |
theme='huggingface', | |
) | |
demo_app.launch(debug=True, enable_queue=False) |