import os import sys import torch import gradio as gr from PIL import Image import numpy as np from omegaconf import OmegaConf import subprocess from tqdm import tqdm import requests import einops import math import random import pytorch_lightning as pl import spaces def download_file(url, filename): response = requests.get(url, stream=True) total_size = int(response.headers.get('content-length', 0)) block_size = 1024 with open(filename, 'wb') as file, tqdm( desc=filename, total=total_size, unit='iB', unit_scale=True, unit_divisor=1024, ) as progress_bar: for data in response.iter_content(block_size): size = file.write(data) progress_bar.update(size) def setup_environment(): if not os.path.exists("CCSR"): print("Cloning CCSR repository...") subprocess.run(["git", "clone", "-b", "dev", "https://github.com/camenduru/CCSR.git"]) os.chdir("CCSR") sys.path.append(os.getcwd()) os.makedirs("weights", exist_ok=True) if not os.path.exists("weights/real-world_ccsr.ckpt"): print("Downloading model checkpoint...") download_file( "https://huggingface.co/camenduru/CCSR/resolve/main/real-world_ccsr.ckpt", "weights/real-world_ccsr.ckpt" ) else: print("Model checkpoint already exists. Skipping download.") setup_environment() from ldm.xformers_state import disable_xformers from model.q_sampler import SpacedSampler from model.ccsr_stage1 import ControlLDM from utils.common import instantiate_from_config, load_state_dict from utils.image import auto_resize config = OmegaConf.load("configs/model/ccsr_stage2.yaml") model = instantiate_from_config(config) ckpt = torch.load("weights/real-world_ccsr.ckpt", map_location="cpu") load_state_dict(model, ckpt, strict=True) model.freeze() device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) @torch.no_grad() @spaces.GPU def process( control_img: Image.Image, num_samples: int, sr_scale: float, strength: float, positive_prompt: str, negative_prompt: str, cfg_scale: float, steps: int, use_color_fix: bool, seed: int, tile_diffusion: bool, tile_diffusion_size: int, tile_diffusion_stride: int ): print(f"control image shape={control_img.size}\n" f"num_samples={num_samples}, sr_scale={sr_scale}, strength={strength}\n" f"positive_prompt='{positive_prompt}', negative_prompt='{negative_prompt}'\n" f"cfg scale={cfg_scale}, steps={steps}, use_color_fix={use_color_fix}\n" f"seed={seed}\n" f"tile_diffusion={tile_diffusion}, tile_diffusion_size={tile_diffusion_size}, tile_diffusion_stride={tile_diffusion_stride}") pl.seed_everything(seed) # Resize input image if sr_scale != 1: control_img = control_img.resize( tuple(math.ceil(x * sr_scale) for x in control_img.size), Image.BICUBIC ) input_size = control_img.size # Resize the image if not tile_diffusion: control_img = auto_resize(control_img, 512) else: control_img = auto_resize(control_img, tile_diffusion_size) # Resize image to be multiples of 64 control_img = control_img.resize( tuple((s // 64 + 1) * 64 for s in control_img.size), Image.LANCZOS ) control_img = np.array(control_img) # Convert to tensor (NCHW, [0,1]) control = torch.tensor(control_img[None] / 255.0, dtype=torch.float32, device=device).clamp_(0, 1) control = einops.rearrange(control, "n h w c -> n c h w").contiguous() height, width = control.size(-2), control.size(-1) model.control_scales = [strength] * 13 # Move model and tensors to GPU if available if torch.cuda.is_available(): model.to("cuda") control = control.to("cuda") sampler = SpacedSampler(model, var_type="fixed_small") preds = [] for _ in tqdm(range(num_samples)): shape = (1, 4, height // 8, width // 8) x_T = torch.randn(shape, device=device, dtype=torch.float32) if torch.cuda.is_available(): x_T = x_T.to("cuda") if not tile_diffusion: samples = sampler.sample_ccsr( steps=steps, t_max=0.6667, t_min=0.3333, shape=shape, cond_img=control, positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T, cfg_scale=cfg_scale, color_fix_type="adain" if use_color_fix else "none" ) else: samples = sampler.sample_with_tile_ccsr( tile_size=tile_diffusion_size, tile_stride=tile_diffusion_stride, steps=steps, t_max=0.6667, t_min=0.3333, shape=shape, cond_img=control, positive_prompt=positive_prompt, negative_prompt=negative_prompt, x_T=x_T, cfg_scale=cfg_scale, color_fix_type="adain" if use_color_fix else "none" ) x_samples = samples.clamp(0, 1) x_samples = (einops.rearrange(x_samples, "b c h w -> b h w c") * 255).cpu().numpy().clip(0, 255).astype(np.uint8) img = Image.fromarray(x_samples[0, ...]).resize(input_size, Image.LANCZOS) preds.append(np.array(img)) return preds def update_output_resolution(image, scale_choice, custom_scale): if image is not None: width, height = image.size if scale_choice == "Custom": scale = custom_scale elif "%" in scale_choice: scale = float(scale_choice.split()[-1].strip("()%")) / 100 else: scale = float(scale_choice.split()[-1].strip("()x")) return f"Current resolution: {width}x{height}. Output resolution: {int(width*scale)}x{int(height*scale)}" return "Upload an image to see the output resolution" def update_scale_choices(image): if image is not None: width, height = image.size aspect_ratio = width / height common_resolutions = [ (1280, 720), (1920, 1080), (2560, 1440), (3840, 2160), # 16:9 (1440, 1440), (2048, 2048), (2560, 2560), (3840, 3840) # 1:1 ] choices = [] for w, h in common_resolutions: if abs(w/h - aspect_ratio) < 0.1: # Allow some tolerance for aspect ratio scale = max(w/width, h/height) if scale > 1: choices.append(f"{w}x{h} ({scale:.2f}x)") if not choices: # If no common resolutions fit, use percentage-based options choices = [ f"{width*2}x{height*2} (200%)", f"{width*4}x{height*4} (400%)", f"{width*8}x{height*8} (800%)" ] choices.append("Custom") return gr.update(choices=choices, value=choices[0]) return gr.update(choices=["Custom"], value="Custom") # Improved UI design css = """ .container {max-width: 1200px; margin: auto; padding: 20px;} .input-image {width: 100%; max-height: 500px; object-fit: contain;} .output-gallery {display: flex; flex-wrap: wrap; justify-content: center;} .output-image {margin: 10px; max-width: 45%; height: auto;} .gr-form {border: 1px solid #e0e0e0; border-radius: 8px; padding: 16px; margin-bottom: 16px;} """ with gr.Blocks(css=css) as block: gr.HTML("