oac / app.py
owiedotch's picture
Update app.py
e14d19c verified
import os
import gradio as gr
import numpy as np
import soundfile as sf
from semanticodec import SemantiCodec
from huggingface_hub import HfApi
import spaces
import torch
import tempfile
import io
import uuid
import pickle
import time
from pathlib import Path
# Initialize the model and ensure it's on the correct device
def load_model():
model = SemantiCodec(token_rate=100, semantic_vocab_size=32768) # 0.35 kbps
if torch.cuda.is_available():
# Move the model to CUDA and ensure it's fully initialized on CUDA
model = model.to("cuda:0")
# Force CUDA initialization
dummy_input = torch.zeros(1, 1, 1, dtype=torch.long).cuda()
try:
with torch.no_grad():
_ = model.decoder(dummy_input)
except:
print("Dummy forward pass failed, but CUDA initialization attempted")
return model
# Initialize model
semanticodec = load_model()
# Get the device of the model
model_device = "cuda:0" if torch.cuda.is_available() else "cpu"
print(f"Model initialized on device: {model_device}")
# Define sample rate as a constant
# Changed from 32000 to 16000 to fix playback speed
SAMPLE_RATE = 16000
@spaces.GPU(duration=20)
def encode_audio(audio_path):
"""Encode audio file to tokens and return them as a file"""
try:
print(f"Encoding audio on device: {model_device}")
# Ensure model is on the right device
semanticodec.to(model_device)
tokens = semanticodec.encode(audio_path)
print(f"Tokens device after encode: {tokens.device if isinstance(tokens, torch.Tensor) else 'numpy'}")
# Move tokens to CPU before converting to numpy
if isinstance(tokens, torch.Tensor):
tokens = tokens.cpu().numpy()
# Ensure tokens are in the right shape for later decoding
if tokens.ndim == 1:
# Reshape to match expected format [batch, seq_len, features]
tokens = tokens.reshape(1, -1, 1)
# Save tokens in a way that preserves shape information
token_data = {
'tokens': tokens,
'shape': tokens.shape,
'device': str(model_device) # Store intended device information
}
# Create a temporary file in /tmp which is writable in Spaces
temp_dir = "/tmp"
os.makedirs(temp_dir, exist_ok=True)
temp_file_path = os.path.join(temp_dir, f"tokens_{uuid.uuid4()}.oterin")
# Write using pickle instead of numpy save
with open(temp_file_path, "wb") as f:
pickle.dump(token_data, f)
# Verify the file exists and has content
if not os.path.exists(temp_file_path) or os.path.getsize(temp_file_path) == 0:
raise Exception("Failed to create token file")
return temp_file_path, f"Encoded to {tokens.shape[1]} tokens"
except Exception as e:
print(f"Encoding error: {str(e)}")
return None, f"Error encoding audio: {str(e)}"
@spaces.GPU(duration=160)
def decode_tokens(token_file):
"""Decode tokens to audio"""
# Ensure the file exists and has content
if not token_file or not os.path.exists(token_file):
return None, "Error: Empty or missing token file"
try:
# Load tokens using pickle instead of numpy load
with open(token_file, "rb") as f:
token_data = pickle.load(f)
tokens = token_data['tokens']
intended_device = token_data.get('device', model_device)
print(f"Loaded tokens with shape {tokens.shape}, intended device: {intended_device}")
# Ensure model is on the right device first
semanticodec.to(model_device)
print(f"Model device before tensor creation: {next(semanticodec.parameters()).device}")
# Convert to torch tensor with Long dtype for embedding
tokens_tensor = torch.tensor(tokens, dtype=torch.long)
print(f"Tokens tensor created on device: {tokens_tensor.device} with dtype: {tokens_tensor.dtype}")
# Explicitly move tokens to the model's device
tokens_tensor = tokens_tensor.to(model_device)
print(f"Tokens moved to device: {tokens_tensor.device}")
# Decode the tokens
waveform = semanticodec.decode(tokens_tensor)
print(f"Waveform device after decode: {waveform.device if isinstance(waveform, torch.Tensor) else 'numpy'}")
# Move waveform to CPU for audio processing
if isinstance(waveform, torch.Tensor):
waveform = waveform.cpu().numpy()
# Extract audio data - this should be a numpy array
audio_data = waveform[0, 0] # Shape should be [time]
print(f"Audio data shape: {audio_data.shape}, dtype: {audio_data.dtype}")
# Return in Gradio Audio compatible format: (sample_rate, audio_data)
return (SAMPLE_RATE, audio_data), f"Decoded {tokens.shape[1]} tokens to audio"
except Exception as e:
print(f"Decoding error: {str(e)}")
return None, f"Error decoding tokens: {str(e)}"
@spaces.GPU(duration=250)
def process_both(audio_path):
"""Encode and then decode the audio without saving intermediate files"""
try:
print(f"Processing both on device: {model_device}")
# Ensure model is on the right device
semanticodec.to(model_device)
# Encode
tokens = semanticodec.encode(audio_path)
print(f"Tokens device after encode: {tokens.device if isinstance(tokens, torch.Tensor) else 'numpy'}")
if isinstance(tokens, torch.Tensor):
tokens = tokens.cpu().numpy()
# Ensure tokens are in the right shape for decoding
if tokens.ndim == 1:
# Reshape to match expected format [batch, seq_len, features]
tokens = tokens.reshape(1, -1, 1)
# Convert back to torch tensor with Long dtype for embedding
tokens_tensor = torch.tensor(tokens, dtype=torch.long)
print(f"Tokens tensor created on device: {tokens_tensor.device} with dtype: {tokens_tensor.dtype}")
# Explicitly move tokens to the model's device
tokens_tensor = tokens_tensor.to(model_device)
print(f"Tokens moved to device: {tokens_tensor.device}")
# Ensure model is on the right device again before decoding
semanticodec.to(model_device)
print(f"Model device before decode: {next(semanticodec.parameters()).device}")
# Decode
waveform = semanticodec.decode(tokens_tensor)
print(f"Waveform device after decode: {waveform.device if isinstance(waveform, torch.Tensor) else 'numpy'}")
# Move waveform to CPU for audio processing
if isinstance(waveform, torch.Tensor):
waveform = waveform.cpu().numpy()
# Extract audio data - this should be a numpy array
audio_data = waveform[0, 0] # Shape should be [time]
print(f"Audio data shape: {audio_data.shape}, dtype: {audio_data.dtype}")
# Return in Gradio Audio compatible format: (sample_rate, audio_data)
return (SAMPLE_RATE, audio_data), f"Encoded to {tokens.shape[1]} tokens\nDecoded {tokens.shape[1]} tokens to audio"
except Exception as e:
print(f"Processing error: {str(e)}")
return None, f"Error processing audio: {str(e)}"
@spaces.GPU(duration=250)
def stream_both(audio_path):
"""Encode and then stream decode the audio"""
try:
print(f"Processing both (streaming) on device: {model_device}")
# Ensure model is on the right device
semanticodec.to(model_device)
# First encode the audio
tokens = semanticodec.encode(audio_path)
if isinstance(tokens, torch.Tensor):
tokens = tokens.cpu().numpy()
# Ensure tokens are in the right shape for decoding
if tokens.ndim == 1:
tokens = tokens.reshape(1, -1, 1)
print(f"Encoded audio to {tokens.shape[1]} tokens, now streaming decoding...")
yield None, f"Encoded to {tokens.shape[1]} tokens, starting decoding..."
# If tokens are too small, decode all at once
if tokens.shape[1] < 1500: # Changed from 500 to 1500 (15 seconds at 100 tokens/sec)
# Convert to torch tensor with Long dtype for embedding
tokens_tensor = torch.tensor(tokens, dtype=torch.long).to(model_device)
# Decode the tokens
semanticodec.to(model_device)
waveform = semanticodec.decode(tokens_tensor)
if isinstance(waveform, torch.Tensor):
waveform = waveform.cpu().numpy()
audio_data = waveform[0, 0]
yield (SAMPLE_RATE, audio_data), f"Encoded to {tokens.shape[1]} tokens and decoded to audio"
return
# Split tokens into chunks for streaming
chunk_size = 1500 # Changed from 500 to 1500 (15 seconds at 100 tokens/sec)
num_chunks = (tokens.shape[1] + chunk_size - 1) // chunk_size # Ceiling division
all_audio_chunks = []
for i in range(num_chunks):
start_idx = i * chunk_size
end_idx = min((i + 1) * chunk_size, tokens.shape[1])
print(f"Decoding chunk {i+1}/{num_chunks}, tokens {start_idx} to {end_idx}")
# Extract chunk of tokens
token_chunk = tokens[:, start_idx:end_idx, :]
# Convert to torch tensor with Long dtype
tokens_tensor = torch.tensor(token_chunk, dtype=torch.long).to(model_device)
# Ensure model is on the expected device
semanticodec.to(model_device)
# Decode the tokens
waveform = semanticodec.decode(tokens_tensor)
if isinstance(waveform, torch.Tensor):
waveform = waveform.cpu().numpy()
# Extract audio data
audio_chunk = waveform[0, 0]
all_audio_chunks.append(audio_chunk)
# Combine all chunks we have so far
combined_audio = np.concatenate(all_audio_chunks)
# Yield the combined audio for streaming playback
yield (SAMPLE_RATE, combined_audio), f"Encoded to {tokens.shape[1]} tokens\nDecoded chunk {i+1}/{num_chunks} ({end_idx}/{tokens.shape[1]} tokens)"
# Small delay to allow Gradio to update UI
time.sleep(0.1)
# Final complete audio
combined_audio = np.concatenate(all_audio_chunks)
yield (SAMPLE_RATE, combined_audio), f"Completed: Encoded to {tokens.shape[1]} tokens and fully decoded"
except Exception as e:
print(f"Streaming process error: {str(e)}")
yield None, f"Error processing audio: {str(e)}"
@spaces.GPU(duration=250)
def stream_decode_tokens(token_file):
"""Decode tokens to audio in streaming chunks"""
# Ensure the file exists and has content
if not token_file or not os.path.exists(token_file):
yield None, "Error: Empty or missing token file"
return
try:
# Load tokens using pickle instead of numpy load
with open(token_file, "rb") as f:
token_data = pickle.load(f)
tokens = token_data['tokens']
intended_device = token_data.get('device', model_device)
print(f"Loaded tokens with shape {tokens.shape}, intended device: {intended_device}")
# Ensure model is on the right device
semanticodec.to(model_device)
# If tokens are too small, decode all at once
if tokens.shape[1] < 1500: # Changed from 500 to 1500 (15 seconds at 100 tokens/sec)
# Convert to torch tensor with Long dtype for embedding
tokens_tensor = torch.tensor(tokens, dtype=torch.long)
tokens_tensor = tokens_tensor.to(model_device)
# Decode the tokens
waveform = semanticodec.decode(tokens_tensor)
if isinstance(waveform, torch.Tensor):
waveform = waveform.cpu().numpy()
audio_data = waveform[0, 0]
yield (SAMPLE_RATE, audio_data), f"Decoded {tokens.shape[1]} tokens to audio"
return
# Split tokens into chunks for streaming
chunk_size = 1500 # Changed from 500 to 1500 (15 seconds at 100 tokens/sec)
num_chunks = (tokens.shape[1] + chunk_size - 1) // chunk_size # Ceiling division
# First status update
yield None, f"Starting decoding of {tokens.shape[1]} tokens in {num_chunks} chunks..."
all_audio_chunks = []
for i in range(num_chunks):
start_idx = i * chunk_size
end_idx = min((i + 1) * chunk_size, tokens.shape[1])
print(f"Decoding chunk {i+1}/{num_chunks}, tokens {start_idx} to {end_idx}")
# Extract chunk of tokens
token_chunk = tokens[:, start_idx:end_idx, :]
# Convert to torch tensor with Long dtype
tokens_tensor = torch.tensor(token_chunk, dtype=torch.long)
tokens_tensor = tokens_tensor.to(model_device)
# Ensure model is on the expected device
semanticodec.to(model_device)
# Decode the tokens
waveform = semanticodec.decode(tokens_tensor)
if isinstance(waveform, torch.Tensor):
waveform = waveform.cpu().numpy()
# Extract audio data
audio_chunk = waveform[0, 0]
all_audio_chunks.append(audio_chunk)
# Combine all chunks we have so far
combined_audio = np.concatenate(all_audio_chunks)
# Yield the combined audio for streaming playback
yield (SAMPLE_RATE, combined_audio), f"Decoded chunk {i+1}/{num_chunks} ({end_idx}/{tokens.shape[1]} tokens)"
# Small delay to allow Gradio to update UI
time.sleep(0.1)
# Final complete audio
combined_audio = np.concatenate(all_audio_chunks)
yield (SAMPLE_RATE, combined_audio), f"Completed decoding all {tokens.shape[1]} tokens"
except Exception as e:
print(f"Streaming decode error: {str(e)}")
yield None, f"Error decoding tokens: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="Oterin Audio Codec") as demo:
gr.Markdown("# Oterin Audio Codec")
gr.Markdown("Upload an audio file to encode it to semantic tokens, decode tokens back to audio, or do both.")
with gr.Tab("Encode Audio"):
with gr.Row():
encode_input = gr.Audio(type="filepath", label="Input Audio")
encode_output = gr.File(label="Encoded Tokens (.oterin)", file_types=[".oterin"])
encode_status = gr.Textbox(label="Status")
encode_btn = gr.Button("Encode")
encode_btn.click(encode_audio, inputs=encode_input, outputs=[encode_output, encode_status])
with gr.Tab("Decode Tokens"):
with gr.Row():
decode_input = gr.File(label="Token File (.oterin)", file_types=[".oterin"])
decode_output = gr.Audio(label="Decoded Audio")
decode_status = gr.Textbox(label="Status")
decode_btn = gr.Button("Decode")
decode_btn.click(decode_tokens, inputs=decode_input, outputs=[decode_output, decode_status])
with gr.Tab("Stream Decode (Listen while decoding)"):
with gr.Row():
stream_decode_input = gr.File(label="Token File (.oterin)", file_types=[".oterin"])
stream_decode_output = gr.Audio(label="Streaming Audio Output")
stream_decode_status = gr.Textbox(label="Status")
stream_decode_btn = gr.Button("Start Streaming Decode")
stream_decode_btn.click(
stream_decode_tokens,
inputs=stream_decode_input,
outputs=[stream_decode_output, stream_decode_status],
show_progress=True
)
with gr.Tab("Both (Encode & Decode)"):
with gr.Row():
both_input = gr.Audio(type="filepath", label="Input Audio")
both_output = gr.Audio(label="Reconstructed Audio")
both_status = gr.Textbox(label="Status")
both_btn = gr.Button("Process")
both_btn.click(process_both, inputs=both_input, outputs=[both_output, both_status])
with gr.Tab("Both Streaming (Encode & Stream Decode)"):
with gr.Row():
stream_both_input = gr.Audio(type="filepath", label="Input Audio")
stream_both_output = gr.Audio(label="Streaming Reconstructed Audio")
stream_both_status = gr.Textbox(label="Status")
stream_both_btn = gr.Button("Encode & Stream Decode")
stream_both_btn.click(
stream_both,
inputs=stream_both_input,
outputs=[stream_both_output, stream_both_status],
show_progress=True
)
if __name__ == "__main__":
demo.launch(share=True)