Update app.py
Browse files
app.py
CHANGED
@@ -9,19 +9,31 @@ import torch
|
|
9 |
import tempfile
|
10 |
import io
|
11 |
import uuid
|
|
|
12 |
from pathlib import Path
|
13 |
|
14 |
-
# Initialize the model
|
15 |
def load_model():
|
16 |
-
|
|
|
|
|
|
|
|
|
17 |
|
|
|
18 |
semanticodec = load_model()
|
|
|
|
|
|
|
19 |
|
20 |
@spaces.GPU(duration=20)
|
21 |
def encode_audio(audio_path):
|
22 |
"""Encode audio file to tokens and return them as a file"""
|
23 |
try:
|
|
|
24 |
tokens = semanticodec.encode(audio_path)
|
|
|
|
|
25 |
# Move tokens to CPU before converting to numpy
|
26 |
if isinstance(tokens, torch.Tensor):
|
27 |
tokens = tokens.cpu().numpy()
|
@@ -31,23 +43,21 @@ def encode_audio(audio_path):
|
|
31 |
# Reshape to match expected format [batch, seq_len, features]
|
32 |
tokens = tokens.reshape(1, -1, 1)
|
33 |
|
34 |
-
# Save
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
if buffer.getbuffer().nbytes == 0:
|
41 |
-
raise Exception("Failed to create token buffer")
|
42 |
|
43 |
# Create a temporary file in /tmp which is writable in Spaces
|
44 |
temp_dir = "/tmp"
|
45 |
os.makedirs(temp_dir, exist_ok=True)
|
46 |
temp_file_path = os.path.join(temp_dir, f"tokens_{uuid.uuid4()}.oterin")
|
47 |
|
48 |
-
# Write
|
49 |
with open(temp_file_path, "wb") as f:
|
50 |
-
|
51 |
|
52 |
# Verify the file exists and has content
|
53 |
if not os.path.exists(temp_file_path) or os.path.getsize(temp_file_path) == 0:
|
@@ -55,9 +65,10 @@ def encode_audio(audio_path):
|
|
55 |
|
56 |
return temp_file_path, f"Encoded to {tokens.shape[1]} tokens"
|
57 |
except Exception as e:
|
|
|
58 |
return None, f"Error encoding audio: {str(e)}"
|
59 |
|
60 |
-
@spaces.GPU(duration=
|
61 |
def decode_tokens(token_file):
|
62 |
"""Decode tokens to audio"""
|
63 |
# Ensure the file exists and has content
|
@@ -65,25 +76,29 @@ def decode_tokens(token_file):
|
|
65 |
return None, "Error: Empty or missing token file"
|
66 |
|
67 |
try:
|
68 |
-
# Load tokens
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
|
|
|
|
|
|
84 |
|
85 |
# Decode the tokens
|
86 |
-
waveform = semanticodec.decode(
|
|
|
87 |
|
88 |
# Move waveform to CPU for audio processing
|
89 |
if isinstance(waveform, torch.Tensor):
|
@@ -100,14 +115,18 @@ def decode_tokens(token_file):
|
|
100 |
|
101 |
return output_buffer, f"Decoded {tokens.shape[1]} tokens to audio"
|
102 |
except Exception as e:
|
|
|
103 |
return None, f"Error decoding tokens: {str(e)}"
|
104 |
|
105 |
-
@spaces.GPU(duration=
|
106 |
def process_both(audio_path):
|
107 |
"""Encode and then decode the audio without saving intermediate files"""
|
108 |
try:
|
|
|
109 |
# Encode
|
110 |
tokens = semanticodec.encode(audio_path)
|
|
|
|
|
111 |
if isinstance(tokens, torch.Tensor):
|
112 |
tokens = tokens.cpu().numpy()
|
113 |
|
@@ -117,14 +136,20 @@ def process_both(audio_path):
|
|
117 |
tokens = tokens.reshape(1, -1, 1)
|
118 |
|
119 |
# Convert back to torch tensor (on CPU first)
|
120 |
-
tokens_tensor = torch.tensor(tokens)
|
|
|
121 |
|
122 |
-
# Explicitly move tokens to
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
|
|
125 |
|
126 |
# Decode
|
127 |
waveform = semanticodec.decode(tokens_tensor)
|
|
|
128 |
|
129 |
# Move waveform to CPU for audio processing
|
130 |
if isinstance(waveform, torch.Tensor):
|
@@ -141,31 +166,15 @@ def process_both(audio_path):
|
|
141 |
|
142 |
return output_buffer, f"Encoded to {tokens.shape[1]} tokens\nDecoded {tokens.shape[1]} tokens to audio"
|
143 |
except Exception as e:
|
|
|
144 |
return None, f"Error processing audio: {str(e)}"
|
145 |
|
146 |
# Create Gradio interface
|
147 |
with gr.Blocks(title="Oterin Audio Codec") as demo:
|
148 |
gr.Markdown("# Oterin Audio Codec")
|
149 |
-
gr.Markdown("Upload an audio file to encode it to semantic tokens
|
150 |
|
151 |
-
|
152 |
-
with gr.Tab("Encode & Decode"):
|
153 |
-
with gr.Row():
|
154 |
-
both_input = gr.Audio(type="filepath", label="Input Audio")
|
155 |
-
both_output = gr.Audio(label="Reconstructed Audio")
|
156 |
-
both_status = gr.Textbox(label="Status")
|
157 |
-
both_btn = gr.Button("Process", variant="primary")
|
158 |
-
both_btn.click(process_both, inputs=both_input, outputs=[both_output, both_status])
|
159 |
-
|
160 |
-
gr.Markdown("""
|
161 |
-
## How it works
|
162 |
-
This option encodes your audio to semantic tokens and immediately decodes it back to audio.
|
163 |
-
It's the recommended way to use the codec as it handles all device management internally.
|
164 |
-
""")
|
165 |
-
|
166 |
-
# Keep separate functions as secondary options with warning
|
167 |
-
with gr.Tab("Advanced (Encode Only)"):
|
168 |
-
gr.Markdown("⚠️ **DEPRECATED**: Using separate encode/decode can lead to device mismatch errors. The combined Encode & Decode tab is recommended.")
|
169 |
with gr.Row():
|
170 |
encode_input = gr.Audio(type="filepath", label="Input Audio")
|
171 |
encode_output = gr.File(label="Encoded Tokens (.oterin)", file_types=[".oterin"])
|
@@ -173,14 +182,21 @@ with gr.Blocks(title="Oterin Audio Codec") as demo:
|
|
173 |
encode_btn = gr.Button("Encode")
|
174 |
encode_btn.click(encode_audio, inputs=encode_input, outputs=[encode_output, encode_status])
|
175 |
|
176 |
-
with gr.Tab("
|
177 |
-
gr.Markdown("⚠️ **DEPRECATED**: Using separate encode/decode can lead to device mismatch errors. The combined Encode & Decode tab is recommended.")
|
178 |
with gr.Row():
|
179 |
decode_input = gr.File(label="Token File (.oterin)", file_types=[".oterin"])
|
180 |
decode_output = gr.Audio(label="Decoded Audio")
|
181 |
decode_status = gr.Textbox(label="Status")
|
182 |
decode_btn = gr.Button("Decode")
|
183 |
decode_btn.click(decode_tokens, inputs=decode_input, outputs=[decode_output, decode_status])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
184 |
|
185 |
if __name__ == "__main__":
|
186 |
demo.launch(share=True)
|
|
|
9 |
import tempfile
|
10 |
import io
|
11 |
import uuid
|
12 |
+
import pickle
|
13 |
from pathlib import Path
|
14 |
|
15 |
+
# Initialize the model and ensure it's on the correct device
|
16 |
def load_model():
|
17 |
+
model = SemantiCodec(token_rate=100, semantic_vocab_size=32768) # 1.40 kbps
|
18 |
+
if torch.cuda.is_available():
|
19 |
+
# Move the model to CUDA
|
20 |
+
model.to("cuda:0")
|
21 |
+
return model
|
22 |
|
23 |
+
# Initialize model
|
24 |
semanticodec = load_model()
|
25 |
+
# Get the device of the model
|
26 |
+
model_device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
27 |
+
print(f"Model initialized on device: {model_device}")
|
28 |
|
29 |
@spaces.GPU(duration=20)
|
30 |
def encode_audio(audio_path):
|
31 |
"""Encode audio file to tokens and return them as a file"""
|
32 |
try:
|
33 |
+
print(f"Encoding audio on device: {model_device}")
|
34 |
tokens = semanticodec.encode(audio_path)
|
35 |
+
print(f"Tokens device after encode: {tokens.device if isinstance(tokens, torch.Tensor) else 'numpy'}")
|
36 |
+
|
37 |
# Move tokens to CPU before converting to numpy
|
38 |
if isinstance(tokens, torch.Tensor):
|
39 |
tokens = tokens.cpu().numpy()
|
|
|
43 |
# Reshape to match expected format [batch, seq_len, features]
|
44 |
tokens = tokens.reshape(1, -1, 1)
|
45 |
|
46 |
+
# Save tokens in a way that preserves shape information
|
47 |
+
token_data = {
|
48 |
+
'tokens': tokens,
|
49 |
+
'shape': tokens.shape,
|
50 |
+
'device': str(model_device) # Store intended device information
|
51 |
+
}
|
|
|
|
|
52 |
|
53 |
# Create a temporary file in /tmp which is writable in Spaces
|
54 |
temp_dir = "/tmp"
|
55 |
os.makedirs(temp_dir, exist_ok=True)
|
56 |
temp_file_path = os.path.join(temp_dir, f"tokens_{uuid.uuid4()}.oterin")
|
57 |
|
58 |
+
# Write using pickle instead of numpy save
|
59 |
with open(temp_file_path, "wb") as f:
|
60 |
+
pickle.dump(token_data, f)
|
61 |
|
62 |
# Verify the file exists and has content
|
63 |
if not os.path.exists(temp_file_path) or os.path.getsize(temp_file_path) == 0:
|
|
|
65 |
|
66 |
return temp_file_path, f"Encoded to {tokens.shape[1]} tokens"
|
67 |
except Exception as e:
|
68 |
+
print(f"Encoding error: {str(e)}")
|
69 |
return None, f"Error encoding audio: {str(e)}"
|
70 |
|
71 |
+
@spaces.GPU(duration=340)
|
72 |
def decode_tokens(token_file):
|
73 |
"""Decode tokens to audio"""
|
74 |
# Ensure the file exists and has content
|
|
|
76 |
return None, "Error: Empty or missing token file"
|
77 |
|
78 |
try:
|
79 |
+
# Load tokens using pickle instead of numpy load
|
80 |
+
with open(token_file, "rb") as f:
|
81 |
+
token_data = pickle.load(f)
|
82 |
+
|
83 |
+
tokens = token_data['tokens']
|
84 |
+
intended_device = token_data.get('device', model_device)
|
85 |
+
print(f"Loaded tokens with shape {tokens.shape}, intended device: {intended_device}")
|
86 |
+
|
87 |
+
# Convert to torch tensor
|
88 |
+
tokens_tensor = torch.tensor(tokens, dtype=torch.float32)
|
89 |
+
print(f"Tokens tensor created on device: {tokens_tensor.device}")
|
90 |
+
|
91 |
+
# Explicitly move tokens to the model's device
|
92 |
+
tokens_tensor = tokens_tensor.to(model_device)
|
93 |
+
print(f"Tokens moved to device: {tokens_tensor.device}")
|
94 |
+
|
95 |
+
# Also ensure model is on the expected device
|
96 |
+
semanticodec.to(model_device)
|
97 |
+
print(f"Model device before decode: {next(semanticodec.parameters()).device}")
|
98 |
|
99 |
# Decode the tokens
|
100 |
+
waveform = semanticodec.decode(tokens_tensor)
|
101 |
+
print(f"Waveform device after decode: {waveform.device if isinstance(waveform, torch.Tensor) else 'numpy'}")
|
102 |
|
103 |
# Move waveform to CPU for audio processing
|
104 |
if isinstance(waveform, torch.Tensor):
|
|
|
115 |
|
116 |
return output_buffer, f"Decoded {tokens.shape[1]} tokens to audio"
|
117 |
except Exception as e:
|
118 |
+
print(f"Decoding error: {str(e)}")
|
119 |
return None, f"Error decoding tokens: {str(e)}"
|
120 |
|
121 |
+
@spaces.GPU(duration=360)
|
122 |
def process_both(audio_path):
|
123 |
"""Encode and then decode the audio without saving intermediate files"""
|
124 |
try:
|
125 |
+
print(f"Processing both on device: {model_device}")
|
126 |
# Encode
|
127 |
tokens = semanticodec.encode(audio_path)
|
128 |
+
print(f"Tokens device after encode: {tokens.device if isinstance(tokens, torch.Tensor) else 'numpy'}")
|
129 |
+
|
130 |
if isinstance(tokens, torch.Tensor):
|
131 |
tokens = tokens.cpu().numpy()
|
132 |
|
|
|
136 |
tokens = tokens.reshape(1, -1, 1)
|
137 |
|
138 |
# Convert back to torch tensor (on CPU first)
|
139 |
+
tokens_tensor = torch.tensor(tokens, dtype=torch.float32)
|
140 |
+
print(f"Tokens tensor created on device: {tokens_tensor.device}")
|
141 |
|
142 |
+
# Explicitly move tokens to the model's device
|
143 |
+
tokens_tensor = tokens_tensor.to(model_device)
|
144 |
+
print(f"Tokens moved to device: {tokens_tensor.device}")
|
145 |
+
|
146 |
+
# Also ensure model is on the expected device
|
147 |
+
semanticodec.to(model_device)
|
148 |
+
print(f"Model device before decode: {next(semanticodec.parameters()).device}")
|
149 |
|
150 |
# Decode
|
151 |
waveform = semanticodec.decode(tokens_tensor)
|
152 |
+
print(f"Waveform device after decode: {waveform.device if isinstance(waveform, torch.Tensor) else 'numpy'}")
|
153 |
|
154 |
# Move waveform to CPU for audio processing
|
155 |
if isinstance(waveform, torch.Tensor):
|
|
|
166 |
|
167 |
return output_buffer, f"Encoded to {tokens.shape[1]} tokens\nDecoded {tokens.shape[1]} tokens to audio"
|
168 |
except Exception as e:
|
169 |
+
print(f"Processing error: {str(e)}")
|
170 |
return None, f"Error processing audio: {str(e)}"
|
171 |
|
172 |
# Create Gradio interface
|
173 |
with gr.Blocks(title="Oterin Audio Codec") as demo:
|
174 |
gr.Markdown("# Oterin Audio Codec")
|
175 |
+
gr.Markdown("Upload an audio file to encode it to semantic tokens, decode tokens back to audio, or do both.")
|
176 |
|
177 |
+
with gr.Tab("Encode Audio"):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
178 |
with gr.Row():
|
179 |
encode_input = gr.Audio(type="filepath", label="Input Audio")
|
180 |
encode_output = gr.File(label="Encoded Tokens (.oterin)", file_types=[".oterin"])
|
|
|
182 |
encode_btn = gr.Button("Encode")
|
183 |
encode_btn.click(encode_audio, inputs=encode_input, outputs=[encode_output, encode_status])
|
184 |
|
185 |
+
with gr.Tab("Decode Tokens"):
|
|
|
186 |
with gr.Row():
|
187 |
decode_input = gr.File(label="Token File (.oterin)", file_types=[".oterin"])
|
188 |
decode_output = gr.Audio(label="Decoded Audio")
|
189 |
decode_status = gr.Textbox(label="Status")
|
190 |
decode_btn = gr.Button("Decode")
|
191 |
decode_btn.click(decode_tokens, inputs=decode_input, outputs=[decode_output, decode_status])
|
192 |
+
|
193 |
+
with gr.Tab("Both (Encode & Decode)"):
|
194 |
+
with gr.Row():
|
195 |
+
both_input = gr.Audio(type="filepath", label="Input Audio")
|
196 |
+
both_output = gr.Audio(label="Reconstructed Audio")
|
197 |
+
both_status = gr.Textbox(label="Status")
|
198 |
+
both_btn = gr.Button("Process")
|
199 |
+
both_btn.click(process_both, inputs=both_input, outputs=[both_output, both_status])
|
200 |
|
201 |
if __name__ == "__main__":
|
202 |
demo.launch(share=True)
|