import spaces import gradio as gr import numpy as np import torch from datasets import load_dataset from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor, pipeline device = "cuda:0" if torch.cuda.is_available() else "cpu" # load speech translation checkpoint asr_pipe = pipeline("automatic-speech-recognition", model="oyemade/w2v-bert-2.0-yoruba-colab-CV16.1", device=device) # load text-to-speech checkpoint and speaker embeddings processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts") model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device) vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device) embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation") speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0) translation_model = pipeline("translation", "facebook/nllb-200-distilled-600M", src_lang="yor_Latn", tgt_lang="eng_Latn", device=device) def translate(audio): text = asr_pipe(audio)["text"] # print(text) translation = translation_model(text) # print(translation[0]['translation_text']) return translation[0]['translation_text'] def synthesise(text): inputs = processor(text=text, return_tensors="pt") speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder) return speech.cpu() @spaces.GPU def speech_to_speech_translation(audio): # print(model) translated_text = translate(model, audio) synthesised_speech = synthesise(translated_text) synthesised_speech = (synthesised_speech.numpy() * 32767).astype(np.int16) return 16000, synthesised_speech iface = gr.Interface( speech_to_speech_translation, gr.Audio(sources="microphone", type="filepath"), gr.Audio(label="Generated Speech", type="numpy"), title="Neoform AI: Yoruba Speech to English Speech", description="Demo for Yoruba speech translated to English Speech. NOTE: If you get an ERROR after pressing submit, give the audio some secs to load then try again.", ) iface.launch()