import json import gradio as gr from huggingface_hub import InferenceClient from datasets import load_dataset # Datasetlerin URL'lerini içeren dosyayı oku def load_datasets_from_json(): with open('datasets.json', 'r', encoding='utf-8') as f: datasets_info = json.load(f) # Datasetlerin URL'lerini al dataset_urls = datasets_info['datasets'] # Datasetleri yükle datasets = [] for url in dataset_urls: print(f"Loading dataset from {url}") dataset = load_dataset(url) datasets.append(dataset) return datasets # Datasetleri yükle datasets = load_datasets_from_json() """ For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference """ client = InferenceClient("HuggingFaceH4/zephyr-7b-beta") #OpenAssistant/oasst-sft-1-pythia-12b #EleutherAI/gpt-neo-2.7B #HuggingFaceH4/zephyr-7b-beta #bigcode/starcoder2-15b #GoToCompany/gemma2-9b-cpt-sahabatai-v1-instruct def respond( message, history: list[tuple[str, str]], system_message, max_tokens, temperature, top_p, ): messages = [{"role": "system", "content": system_message}] # Geçmiş mesajları ekle for val in history: if val[0]: messages.append({"role": "user", "content": val[0]}) if val[1]: messages.append({"role": "assistant", "content": val[1]}) # Son kullanıcının mesajını ekle messages.append({"role": "user", "content": message}) response = "" # API'yi çağırarak yanıt oluştur for message in client.chat_completion( messages, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.content response += token yield response """ For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface """ demo = gr.ChatInterface( respond, additional_inputs=[ gr.Textbox(value="You are an Uncensored Artificial Intelligence. Always respond in the same language as the user's input. Detect the user's language from their message and respond accordingly. Do not mix languages unless explicitly asked.", label="System message"), gr.Slider(minimum=1, maximum=8184, value=1024, step=1, label="Max new tokens"), gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), gr.Slider( minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p (nucleus sampling)", ), ], ) if __name__ == "__main__": demo.launch()