Spaces:
Running
on
Zero
Running
on
Zero
Aboubacar OUATTARA - kaira
commited on
Commit
•
54440ac
1
Parent(s):
7dc5f48
initial commit
Browse files- app.py +50 -0
- bambara_utils.py +46 -0
- packages.txt +1 -0
- requirements.txt +8 -0
app.py
ADDED
@@ -0,0 +1,50 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import spaces
|
2 |
+
import torch
|
3 |
+
from transformers import pipeline
|
4 |
+
import gradio as gr
|
5 |
+
from bambara_utils import BambaraWhisperTokenizer
|
6 |
+
|
7 |
+
# Determine the appropriate device (GPU or CPU)
|
8 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
9 |
+
|
10 |
+
# Define the model checkpoint and language
|
11 |
+
model_checkpoint = "oza75/whisper-bambara-asr-001"
|
12 |
+
language = "bambara"
|
13 |
+
|
14 |
+
# Load the custom tokenizer designed for Bambara and the ASR model
|
15 |
+
tokenizer = BambaraWhisperTokenizer.from_pretrained(model_checkpoint, language=language, device=device)
|
16 |
+
pipe = pipeline(model=model_checkpoint, tokenizer=tokenizer, device=device)
|
17 |
+
|
18 |
+
|
19 |
+
@spaces.GPU()
|
20 |
+
def transcribe(audio):
|
21 |
+
"""
|
22 |
+
Transcribes the provided audio file into text using the configured ASR pipeline.
|
23 |
+
|
24 |
+
Args:
|
25 |
+
audio: The path to the audio file to transcribe.
|
26 |
+
|
27 |
+
Returns:
|
28 |
+
A string representing the transcribed text.
|
29 |
+
"""
|
30 |
+
# Use the pipeline to perform transcription
|
31 |
+
text = pipe(audio)["text"]
|
32 |
+
return text
|
33 |
+
|
34 |
+
|
35 |
+
def main():
|
36 |
+
# Setup Gradio interface
|
37 |
+
iface = gr.Interface(
|
38 |
+
fn=transcribe,
|
39 |
+
inputs=gr.Audio(type="filepath"),
|
40 |
+
outputs="text",
|
41 |
+
title="Bambara Automatic Speech Recognition",
|
42 |
+
description="Realtime demo for Bambara speech recognition based on a fine-tuning of the Whisper model."
|
43 |
+
)
|
44 |
+
|
45 |
+
# Launch the interface
|
46 |
+
iface.launch(share=False)
|
47 |
+
|
48 |
+
|
49 |
+
if __name__ == "__main__":
|
50 |
+
main()
|
bambara_utils.py
ADDED
@@ -0,0 +1,46 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from typing import List
|
2 |
+
|
3 |
+
from tokenizers import AddedToken
|
4 |
+
from transformers import WhisperTokenizer, WhisperProcessor
|
5 |
+
from transformers.models.whisper.tokenization_whisper import TO_LANGUAGE_CODE, TASK_IDS
|
6 |
+
|
7 |
+
CUSTOM_TO_LANGUAGE_CODE = {**TO_LANGUAGE_CODE, "bambara": "bm"}
|
8 |
+
|
9 |
+
|
10 |
+
class BambaraWhisperTokenizer(WhisperTokenizer):
|
11 |
+
def __init__(self, *args, **kwargs):
|
12 |
+
super().__init__(*args, **kwargs)
|
13 |
+
self.add_tokens(AddedToken(content="<|bm|>", lstrip=False, rstrip=False, normalized=False, special=True))
|
14 |
+
|
15 |
+
@property
|
16 |
+
def prefix_tokens(self) -> List[int]:
|
17 |
+
bos_token_id = self.convert_tokens_to_ids("<|startoftranscript|>")
|
18 |
+
translate_token_id = self.convert_tokens_to_ids("<|translate|>")
|
19 |
+
transcribe_token_id = self.convert_tokens_to_ids("<|transcribe|>")
|
20 |
+
notimestamps_token_id = self.convert_tokens_to_ids("<|notimestamps|>")
|
21 |
+
|
22 |
+
if self.language is not None:
|
23 |
+
self.language = self.language.lower()
|
24 |
+
if self.language in CUSTOM_TO_LANGUAGE_CODE:
|
25 |
+
language_id = CUSTOM_TO_LANGUAGE_CODE[self.language]
|
26 |
+
elif self.language in CUSTOM_TO_LANGUAGE_CODE.values():
|
27 |
+
language_id = self.language
|
28 |
+
else:
|
29 |
+
is_language_code = len(self.language) == 2
|
30 |
+
raise ValueError(
|
31 |
+
f"Unsupported language: {self.language}. Language should be one of:"
|
32 |
+
f" {list(CUSTOM_TO_LANGUAGE_CODE.values()) if is_language_code else list(CUSTOM_TO_LANGUAGE_CODE.keys())}."
|
33 |
+
)
|
34 |
+
|
35 |
+
if self.task is not None:
|
36 |
+
if self.task not in TASK_IDS:
|
37 |
+
raise ValueError(f"Unsupported task: {self.task}. Task should be in: {TASK_IDS}")
|
38 |
+
|
39 |
+
bos_sequence = [bos_token_id]
|
40 |
+
if self.language is not None:
|
41 |
+
bos_sequence.append(self.convert_tokens_to_ids(f"<|{language_id}|>"))
|
42 |
+
if self.task is not None:
|
43 |
+
bos_sequence.append(transcribe_token_id if self.task == "transcribe" else translate_token_id)
|
44 |
+
if not self.predict_timestamps:
|
45 |
+
bos_sequence.append(notimestamps_token_id)
|
46 |
+
return bos_sequence
|
packages.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ffmpeg
|
requirements.txt
ADDED
@@ -0,0 +1,8 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
datasets[audio]
|
2 |
+
transformers
|
3 |
+
accelerate
|
4 |
+
evaluate
|
5 |
+
jiwer
|
6 |
+
tensorboard
|
7 |
+
gradio
|
8 |
+
spaces
|