import gradio as gr from transformers import pipeline import torch import logging import spaces from typing import Literal, Tuple # Set up logging logging.basicConfig(level=logging.INFO) logger = logging.getLogger(__name__) # Automatically detect the available device (CUDA, MPS, or CPU) if torch.cuda.is_available(): device = "cuda" logger.info("Using CUDA for inference.") elif torch.backends.mps.is_available(): device = "mps" logger.info("Using MPS for inference.") else: device = "cpu" logger.info("Using CPU for inference.") # Load the translation pipeline with the specified model and detected device model_checkpoint = "oza75/bm-nllb-1.3B" translator = pipeline("translation", model=model_checkpoint, device=device, max_length=512) logger.info("Translation pipeline initialized successfully.") # Define the languages supported SOURCE_LANG_OPTIONS = { "French": "fra_Latn", "English": "eng_Latn", "Bambara": "bam_Latn", "Bambara With Error": "bam_Error" } TARGET_LANG_OPTIONS = { "French": "fra_Latn", "English": "eng_Latn", "Bambara": "bam_Latn" } # Define the translation function with typing @spaces.GPU() def translate_text(text: str, source_lang: str, target_lang: str) -> str: """ Translate the input text from the source language to the target language using the NLLB model. Args: text (str): The text to be translated. source_lang (str): The source language code (e.g., "fra_Latn", "bam_Error"). target_lang (str): The target language code (e.g., "eng_Latn", "bam_Latn"). Returns: str: The translated text. """ source_lang, target_lang = SOURCE_LANG_OPTIONS[source_lang], TARGET_LANG_OPTIONS[target_lang] logger.info(f"Translating text from {source_lang} to {target_lang}.") try: # Perform translation using the Hugging Face pipeline result = translator(text, src_lang=source_lang, tgt_lang=target_lang) translated_text = result[0]['translation_text'] logger.info("Translation successful.") return translated_text except Exception as e: logger.error(f"Translation failed: {e}") return "An error occurred during translation." # Define the Gradio interface def build_interface(): """ Builds the Gradio interface for translating text between supported languages. Returns: gr.Interface: The Gradio interface object. """ # Define Gradio input and output components text_input = gr.Textbox(lines=5, label="Text to Translate", placeholder="Enter text here...") source_lang_input = gr.Dropdown(choices=list(SOURCE_LANG_OPTIONS.keys()), value="French", label="Source Language") target_lang_input = gr.Dropdown(choices=list(TARGET_LANG_OPTIONS.keys()), value="Bambara", label="Target Language") output_text = gr.Textbox(label="Translated Text") # Define the Gradio interface with the translation function return gr.Interface( fn=translate_text, inputs=[text_input, source_lang_input, target_lang_input], outputs=output_text, title="Bambara NLLB Translation", description=( "This application uses the NLLB model to translate text between French, English, and Bambara. " "The source and target languages should be chosen from the dropdown options. If you encounter " "any issues, please check your inputs." ), examples=[ ["Thomas Sankara, né le 21 décembre 1949 à Yako (Haute-Volta) et mort assassiné le 15 octobre 1987 à Ouagadougou (Burkina Faso), est un homme d'État voltaïque, chef de l’État de la république de 'Haute-Volta', rebaptisée Burkina Faso, de 1983 à 1987.", "French", "Bambara"], ["Good morning", "English", "Bambara"], ["- Ɔridinatɛri ye minɛn ye min bɛ se ka porogaramu - A bɛ se ka kunnafoniw mara - A bɛ se ka kunnafoniw sɔrɔ - A bɛ se ka kunnafoniw baara", "Bambara", "French"], ] ) # Run the Gradio application if __name__ == "__main__": logger.info("Starting the Gradio interface for the Bambara NLLB model.") interface = build_interface() interface.launch() logger.info("Gradio interface running.")