File size: 6,198 Bytes
448716e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from newspaper import Article
import nltk
from datetime import datetime, timedelta
import requests
from bs4 import BeautifulSoup
import re

# Download required NLTK data
try:
    nltk.data.find('tokenizers/punkt')
except LookupError:
    nltk.download('punkt')

# Initialize models and tokenizers
def load_models():
    # Text generation model
    generator_model = "facebook/opt-350m"
    generator_tokenizer = AutoTokenizer.from_pretrained(generator_model)
    generator = AutoModelForCausalLM.from_pretrained(generator_model)
    
    # Sentiment analysis
    sentiment_analyzer = pipeline(
        "sentiment-analysis",
        model="finiteautomata/bertweet-base-sentiment-analysis"
    )
    
    # Bias detection
    bias_detector = pipeline(
        "text-classification",
        model="unitary/unbiased-bertscore"
    )
    
    return generator_tokenizer, generator, sentiment_analyzer, bias_detector

# Function to fetch recent news
def fetch_recent_news(query, num_articles=3):
    base_url = "https://news.google.com/rss/search"
    params = {
        'q': query,
        'hl': 'en-US',
        'gl': 'US',
        'ceid': 'US:en'
    }
    
    try:
        response = requests.get(base_url, params=params)
        soup = BeautifulSoup(response.content, 'xml')
        items = soup.find_all('item')[:num_articles]
        
        news_data = []
        for item in items:
            try:
                article = Article(item.link.text)
                article.download()
                article.parse()
                article.nlp()
                news_data.append({
                    'title': article.title,
                    'summary': article.summary
                })
            except:
                continue
        
        return news_data
    except Exception as e:
        return [{'title': 'Error fetching news', 'summary': str(e)}]

# Generate content with ethical oversight
def generate_content(
    product_name,
    product_description,
    target_audience,
    key_features,
    unique_benefits,
    platform,
    tone,
    generator_tokenizer,
    generator,
    sentiment_analyzer,
    bias_detector
):
    # Format prompt based on platform
    char_limit = 280 if platform == "Twitter" else 500
    
    # Get recent news for context
    news_data = fetch_recent_news(f"{product_name} {target_audience}")
    news_context = "\n".join([f"Recent news: {item['title']}" for item in news_data])
    
    # Create prompt
    prompt = f"""
    Product: {product_name}
    Description: {product_description}
    Target Audience: {target_audience}
    Key Features: {key_features}
    Unique Benefits: {unique_benefits}
    Tone: {tone}
    Platform: {platform}
    Character Limit: {char_limit}
    
    {news_context}
    
    Create a {platform} post that highlights the product's benefits while maintaining a {tone} tone:
    """
    
    # Generate initial content
    inputs = generator_tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
    outputs = generator.generate(
        inputs["input_ids"],
        max_length=char_limit,
        num_return_sequences=3,
        temperature=0.7,
        top_p=0.9,
        do_sample=True,
    )
    
    generated_texts = [generator_tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
    
    # Filter and analyze content
    filtered_content = []
    for text in generated_texts:
        # Clean up text
        text = text.replace(prompt, "").strip()
        
        # Check sentiment
        sentiment = sentiment_analyzer(text)[0]
        
        # Check bias
        bias = bias_detector(text)[0]
        
        # Filter based on ethical considerations
        if (
            sentiment['label'] != 'negative' and
            float(bias['score']) < 0.7 and  # Adjust threshold as needed
            len(text) <= char_limit
        ):
            filtered_content.append({
                'text': text,
                'sentiment': sentiment['label'],
                'bias_score': f"{float(bias['score']):.2f}"
            })
    
    return filtered_content

# Gradio interface
def create_interface():
    generator_tokenizer, generator, sentiment_analyzer, bias_detector = load_models()
    
    def process_input(
        product_name,
        product_description,
        target_audience,
        key_features,
        unique_benefits,
        platform,
        tone
    ):
        results = generate_content(
            product_name,
            product_description,
            target_audience,
            key_features,
            unique_benefits,
            platform,
            tone,
            generator_tokenizer,
            generator,
            sentiment_analyzer,
            bias_detector
        )
        
        output = ""
        for i, content in enumerate(results, 1):
            output += f"\nVersion {i}:\n"
            output += f"Content: {content['text']}\n"
            output += f"Sentiment: {content['sentiment']}\n"
            output += f"Bias Score: {content['bias_score']}\n"
            output += "-" * 50 + "\n"
        
        return output
    
    # Create the interface
    iface = gr.Interface(
        fn=process_input,
        inputs=[
            gr.Textbox(label="Product Name"),
            gr.Textbox(label="Product Description", lines=3),
            gr.Textbox(label="Target Audience"),
            gr.Textbox(label="Key Features", lines=2),
            gr.Textbox(label="Unique Benefits", lines=2),
            gr.Radio(
                choices=["Twitter", "Instagram"],
                label="Platform",
                value="Twitter"
            ),
            gr.Textbox(label="Tone (e.g., professional, casual, friendly)"),
        ],
        outputs=gr.Textbox(label="Generated Content", lines=10),
        title="Ethimar - AI Marketing Content Generator",
        description="Generate ethical marketing content with AI-powered insights",
        theme="default"
    )
    
    return iface

# Launch the app
if __name__ == "__main__":
    iface = create_interface()
    iface.launch()