File size: 6,198 Bytes
448716e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
from newspaper import Article
import nltk
from datetime import datetime, timedelta
import requests
from bs4 import BeautifulSoup
import re
# Download required NLTK data
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
# Initialize models and tokenizers
def load_models():
# Text generation model
generator_model = "facebook/opt-350m"
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model)
generator = AutoModelForCausalLM.from_pretrained(generator_model)
# Sentiment analysis
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="finiteautomata/bertweet-base-sentiment-analysis"
)
# Bias detection
bias_detector = pipeline(
"text-classification",
model="unitary/unbiased-bertscore"
)
return generator_tokenizer, generator, sentiment_analyzer, bias_detector
# Function to fetch recent news
def fetch_recent_news(query, num_articles=3):
base_url = "https://news.google.com/rss/search"
params = {
'q': query,
'hl': 'en-US',
'gl': 'US',
'ceid': 'US:en'
}
try:
response = requests.get(base_url, params=params)
soup = BeautifulSoup(response.content, 'xml')
items = soup.find_all('item')[:num_articles]
news_data = []
for item in items:
try:
article = Article(item.link.text)
article.download()
article.parse()
article.nlp()
news_data.append({
'title': article.title,
'summary': article.summary
})
except:
continue
return news_data
except Exception as e:
return [{'title': 'Error fetching news', 'summary': str(e)}]
# Generate content with ethical oversight
def generate_content(
product_name,
product_description,
target_audience,
key_features,
unique_benefits,
platform,
tone,
generator_tokenizer,
generator,
sentiment_analyzer,
bias_detector
):
# Format prompt based on platform
char_limit = 280 if platform == "Twitter" else 500
# Get recent news for context
news_data = fetch_recent_news(f"{product_name} {target_audience}")
news_context = "\n".join([f"Recent news: {item['title']}" for item in news_data])
# Create prompt
prompt = f"""
Product: {product_name}
Description: {product_description}
Target Audience: {target_audience}
Key Features: {key_features}
Unique Benefits: {unique_benefits}
Tone: {tone}
Platform: {platform}
Character Limit: {char_limit}
{news_context}
Create a {platform} post that highlights the product's benefits while maintaining a {tone} tone:
"""
# Generate initial content
inputs = generator_tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
outputs = generator.generate(
inputs["input_ids"],
max_length=char_limit,
num_return_sequences=3,
temperature=0.7,
top_p=0.9,
do_sample=True,
)
generated_texts = [generator_tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
# Filter and analyze content
filtered_content = []
for text in generated_texts:
# Clean up text
text = text.replace(prompt, "").strip()
# Check sentiment
sentiment = sentiment_analyzer(text)[0]
# Check bias
bias = bias_detector(text)[0]
# Filter based on ethical considerations
if (
sentiment['label'] != 'negative' and
float(bias['score']) < 0.7 and # Adjust threshold as needed
len(text) <= char_limit
):
filtered_content.append({
'text': text,
'sentiment': sentiment['label'],
'bias_score': f"{float(bias['score']):.2f}"
})
return filtered_content
# Gradio interface
def create_interface():
generator_tokenizer, generator, sentiment_analyzer, bias_detector = load_models()
def process_input(
product_name,
product_description,
target_audience,
key_features,
unique_benefits,
platform,
tone
):
results = generate_content(
product_name,
product_description,
target_audience,
key_features,
unique_benefits,
platform,
tone,
generator_tokenizer,
generator,
sentiment_analyzer,
bias_detector
)
output = ""
for i, content in enumerate(results, 1):
output += f"\nVersion {i}:\n"
output += f"Content: {content['text']}\n"
output += f"Sentiment: {content['sentiment']}\n"
output += f"Bias Score: {content['bias_score']}\n"
output += "-" * 50 + "\n"
return output
# Create the interface
iface = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(label="Product Name"),
gr.Textbox(label="Product Description", lines=3),
gr.Textbox(label="Target Audience"),
gr.Textbox(label="Key Features", lines=2),
gr.Textbox(label="Unique Benefits", lines=2),
gr.Radio(
choices=["Twitter", "Instagram"],
label="Platform",
value="Twitter"
),
gr.Textbox(label="Tone (e.g., professional, casual, friendly)"),
],
outputs=gr.Textbox(label="Generated Content", lines=10),
title="Ethimar - AI Marketing Content Generator",
description="Generate ethical marketing content with AI-powered insights",
theme="default"
)
return iface
# Launch the app
if __name__ == "__main__":
iface = create_interface()
iface.launch() |