File size: 7,855 Bytes
448716e 7ae0911 448716e 76c0903 448716e 76c0903 448716e 76c0903 448716e 76c0903 448716e 76c0903 448716e 7ae0911 448716e 76c0903 448716e 7ae0911 448716e 7ae0911 448716e 7ae0911 448716e 7ae0911 448716e 7ae0911 448716e 7ae0911 448716e 7ae0911 448716e 7ae0911 448716e 7ae0911 448716e 76c0903 448716e 76c0903 448716e 7ae0911 448716e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 |
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import nltk
from datetime import datetime, timedelta
import requests
from bs4 import BeautifulSoup
# Download required NLTK data
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
# Initialize models and tokenizers
def load_models():
try:
# Text generation model
generator_model = "facebook/opt-350m"
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model)
generator = AutoModelForCausalLM.from_pretrained(generator_model)
# Sentiment analysis
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="finiteautomata/bertweet-base-sentiment-analysis"
)
# Content safety checker
content_checker = pipeline(
"text-classification",
model="facebook/roberta-hate-speech-dynabench-r4-target"
)
return generator_tokenizer, generator, sentiment_analyzer, content_checker
except Exception as e:
print(f"Error loading models: {str(e)}")
raise
# Simplified news fetching function
def fetch_recent_news(query, num_articles=3):
base_url = "https://news.google.com/rss/search"
params = {
'q': query,
'hl': 'en-US',
'gl': 'US',
'ceid': 'US:en'
}
try:
response = requests.get(base_url, params=params, timeout=5)
soup = BeautifulSoup(response.content, 'xml')
items = soup.find_all('item', limit=num_articles)
news_data = []
for item in items:
try:
news_data.append({
'title': item.title.text,
'description': item.description.text if item.description else ""
})
except:
continue
return news_data
except Exception as e:
return [{'title': f'Using default context due to error: {str(e)}', 'description': ''}]
# Generate content with ethical oversight
def generate_content(
product_name,
product_description,
target_audience,
key_features,
unique_benefits,
platform,
tone,
generator_tokenizer,
generator,
sentiment_analyzer,
content_checker
):
# Format prompt based on platform
char_limit = 280 if platform == "Twitter" else 500
# Get recent news for context
news_data = fetch_recent_news(f"{product_name} {target_audience}")
news_context = "\n".join([f"Recent context: {item['title']}" for item in news_data])
# Create prompt
prompt = f"""
Create a {platform} post with these requirements:
- Product Name: {product_name}
- Description: {product_description}
- Target Audience: {target_audience}
- Key Features: {key_features}
- Unique Benefits: {unique_benefits}
- Tone: {tone}
- Maximum Length: {char_limit} characters
Recent Market Context:
{news_context}
Generate a compelling {platform} post that highlights the product's benefits while maintaining a {tone} tone.
"""
try:
# Generate initial content
inputs = generator_tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
outputs = generator.generate(
inputs["input_ids"],
max_length=char_limit + len(prompt),
num_return_sequences=3,
temperature=0.7,
top_p=0.9,
do_sample=True,
)
generated_texts = [generator_tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
# Filter and analyze content
filtered_content = []
for text in generated_texts:
# Clean up text by removing the prompt
text = text.replace(prompt, "").strip()
# Skip if text is too short or too long
if len(text) < 10 or len(text) > char_limit:
continue
# Check sentiment
sentiment = sentiment_analyzer(text)[0]
# Check content safety
safety_check = content_checker(text)[0]
# Filter based on ethical considerations
if (
sentiment['label'] != 'negative' and
safety_check['label'] == 'not_hate' and
len(text) <= char_limit
):
filtered_content.append({
'text': text,
'sentiment': sentiment['label'],
'safety_score': f"{float(safety_check['score']):.2f}"
})
return filtered_content
except Exception as e:
print(f"Error generating content: {str(e)}")
return []
# Gradio interface
def create_interface():
generator_tokenizer, generator, sentiment_analyzer, content_checker = load_models()
def process_input(
product_name,
product_description,
target_audience,
key_features,
unique_benefits,
platform,
tone
):
try:
results = generate_content(
product_name,
product_description,
target_audience,
key_features,
unique_benefits,
platform,
tone,
generator_tokenizer,
generator,
sentiment_analyzer,
content_checker
)
if not results:
return "No suitable content generated. Please try again with different parameters."
output = ""
for i, content in enumerate(results, 1):
output += f"\nVersion {i}:\n"
output += f"Content: {content['text']}\n"
output += f"Sentiment: {content['sentiment']}\n"
output += f"Safety Score: {content['safety_score']}\n"
output += "-" * 50 + "\n"
return output
except Exception as e:
return f"An error occurred: {str(e)}"
# Create the interface
iface = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(label="Product Name", placeholder="Enter product name"),
gr.Textbox(label="Product Description", lines=3, placeholder="Brief description of your product"),
gr.Textbox(label="Target Audience", placeholder="Who is this product for?"),
gr.Textbox(label="Key Features", lines=2, placeholder="Main features of your product"),
gr.Textbox(label="Unique Benefits", lines=2, placeholder="What makes your product special?"),
gr.Radio(
choices=["Twitter", "Instagram"],
label="Platform",
value="Twitter"
),
gr.Textbox(label="Tone", placeholder="e.g., professional, casual, friendly"),
],
outputs=gr.Textbox(label="Generated Content", lines=10),
title="Ethimar - AI Marketing Content Generator",
description="Generate ethical marketing content with AI-powered insights",
theme="default",
examples=[
[
"EcoBottle",
"Sustainable water bottle made from recycled ocean plastic",
"Environmentally conscious young professionals",
"100% recycled materials, Insulated design, Leak-proof",
"Helps clean oceans, Keeps drinks cold for 24 hours",
"Twitter",
"professional"
]
]
)
return iface
# Launch the app
if __name__ == "__main__":
iface = create_interface()
iface.launch() |