ethimar / app.py
Ozgur Unlu
inital setup and fixes changed news api
76c0903
raw
history blame
6.6 kB
import gradio as gr
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
import nltk
from datetime import datetime, timedelta
import requests
from bs4 import BeautifulSoup
import json
# Download required NLTK data
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
# Initialize models and tokenizers
def load_models():
# Text generation model
generator_model = "facebook/opt-350m"
generator_tokenizer = AutoTokenizer.from_pretrained(generator_model)
generator = AutoModelForCausalLM.from_pretrained(generator_model)
# Sentiment analysis
sentiment_analyzer = pipeline(
"sentiment-analysis",
model="finiteautomata/bertweet-base-sentiment-analysis"
)
# Bias detection
bias_detector = pipeline(
"text-classification",
model="unitary/unbiased-bertscore"
)
return generator_tokenizer, generator, sentiment_analyzer, bias_detector
# Simplified news fetching function
def fetch_recent_news(query, num_articles=3):
# Using Google News RSS feed
base_url = "https://news.google.com/rss/search"
params = {
'q': query,
'hl': 'en-US',
'gl': 'US',
'ceid': 'US:en'
}
try:
response = requests.get(base_url, params=params, timeout=5)
soup = BeautifulSoup(response.content, 'xml')
items = soup.find_all('item', limit=num_articles)
news_data = []
for item in items:
try:
news_data.append({
'title': item.title.text,
'description': item.description.text if item.description else ""
})
except:
continue
return news_data
except Exception as e:
return [{'title': f'Using default context due to error: {str(e)}', 'description': ''}]
# Generate content with ethical oversight
def generate_content(
product_name,
product_description,
target_audience,
key_features,
unique_benefits,
platform,
tone,
generator_tokenizer,
generator,
sentiment_analyzer,
bias_detector
):
# Format prompt based on platform
char_limit = 280 if platform == "Twitter" else 500
# Get recent news for context
news_data = fetch_recent_news(f"{product_name} {target_audience}")
news_context = "\n".join([f"Recent context: {item['title']}" for item in news_data])
# Create prompt
prompt = f"""
Product: {product_name}
Description: {product_description}
Target Audience: {target_audience}
Key Features: {key_features}
Unique Benefits: {unique_benefits}
Tone: {tone}
Platform: {platform}
Character Limit: {char_limit}
{news_context}
Create a {platform} post that highlights the product's benefits while maintaining a {tone} tone:
"""
# Generate initial content
inputs = generator_tokenizer(prompt, return_tensors="pt", max_length=512, truncation=True)
outputs = generator.generate(
inputs["input_ids"],
max_length=char_limit,
num_return_sequences=3,
temperature=0.7,
top_p=0.9,
do_sample=True,
)
generated_texts = [generator_tokenizer.decode(output, skip_special_tokens=True) for output in outputs]
# Filter and analyze content
filtered_content = []
for text in generated_texts:
# Clean up text
text = text.replace(prompt, "").strip()
# Skip if text is too short
if len(text) < 10:
continue
# Check sentiment
sentiment = sentiment_analyzer(text)[0]
# Check bias
bias = bias_detector(text)[0]
# Filter based on ethical considerations
if (
sentiment['label'] != 'negative' and
float(bias['score']) < 0.7 and # Adjust threshold as needed
len(text) <= char_limit
):
filtered_content.append({
'text': text,
'sentiment': sentiment['label'],
'bias_score': f"{float(bias['score']):.2f}"
})
return filtered_content
# Gradio interface
def create_interface():
generator_tokenizer, generator, sentiment_analyzer, bias_detector = load_models()
def process_input(
product_name,
product_description,
target_audience,
key_features,
unique_benefits,
platform,
tone
):
results = generate_content(
product_name,
product_description,
target_audience,
key_features,
unique_benefits,
platform,
tone,
generator_tokenizer,
generator,
sentiment_analyzer,
bias_detector
)
if not results:
return "No suitable content generated. Please try again with different parameters."
output = ""
for i, content in enumerate(results, 1):
output += f"\nVersion {i}:\n"
output += f"Content: {content['text']}\n"
output += f"Sentiment: {content['sentiment']}\n"
output += f"Bias Score: {content['bias_score']}\n"
output += "-" * 50 + "\n"
return output
# Create the interface
iface = gr.Interface(
fn=process_input,
inputs=[
gr.Textbox(label="Product Name", placeholder="Enter product name"),
gr.Textbox(label="Product Description", lines=3, placeholder="Brief description of your product"),
gr.Textbox(label="Target Audience", placeholder="Who is this product for?"),
gr.Textbox(label="Key Features", lines=2, placeholder="Main features of your product"),
gr.Textbox(label="Unique Benefits", lines=2, placeholder="What makes your product special?"),
gr.Radio(
choices=["Twitter", "Instagram"],
label="Platform",
value="Twitter"
),
gr.Textbox(label="Tone", placeholder="e.g., professional, casual, friendly"),
],
outputs=gr.Textbox(label="Generated Content", lines=10),
title="Ethimar - AI Marketing Content Generator",
description="Generate ethical marketing content with AI-powered insights",
theme="default"
)
return iface
# Launch the app
if __name__ == "__main__":
iface = create_interface()
iface.launch()