File size: 7,540 Bytes
e437acb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 |
from __future__ import print_function, division
import torch
torch.set_printoptions(profile="full")
import matplotlib.pyplot as plt
import argparse, os
import numpy as np
import shutil
from torch.utils.data import DataLoader
from torchvision import transforms
from models.CDCNs_u import Conv2d_cd, CDCN_u
from Load_OULUNPUcrop_valtest import Spoofing_valtest, Normaliztion_valtest, ToTensor_valtest
import torch.optim as optim
from utils import performances
# Dataset root
val_image_dir = '/export2/home/wht/oulu_img_crop/dev_file_flod/'
test_image_dir = '/export2/home/wht/oulu_img_crop/test_file_flod/'
val_map_dir = '/export2/home/wht/oulu_img_crop/dev_depth_flod/'
test_map_dir = '/export2/home/wht/oulu_img_crop/test_depth_flod/'
val_list = '/export2/home/wht/oulu_img_crop/protocols/Protocol_1/Dev.txt'
test_list = '/export2/home/wht/oulu_img_crop/protocols/Protocol_1/Test.txt'
# main function
def test():
# GPU & log file --> if use DataParallel, please comment this command
os.environ["CUDA_VISIBLE_DEVICES"] = '0, 1, 2, 3'
isExists = os.path.exists(args.log)
if not isExists:
os.makedirs(args.log)
log_file = open(args.log + '/' + args.log + '_log_P1.txt', 'w')
log_file.write('Oulu-NPU, P1:\n ')
log_file.flush()
print('test!\n')
log_file.write('test!\n')
log_file.flush()
model = CDCN_u(basic_conv=Conv2d_cd, theta=0.7)
# model = ResNet18_u()
model = model.cuda()
model = torch.nn.DataParallel(model)
model.load_state_dict(torch.load('./DUM/checkpoint/CDCN_U_P1.pkl', map_location='cuda:0'))
print(model)
optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.00005)
for epoch in range(args.epochs):
model.eval()
with torch.no_grad():
###########################################
''' val '''
###########################################
# val for threshold
val_data = Spoofing_valtest(val_list, val_image_dir, val_map_dir,
transform=transforms.Compose([Normaliztion_valtest(), ToTensor_valtest()]))
dataloader_val = DataLoader(val_data, batch_size=1, shuffle=False, num_workers=4)
map_score_list = []
for i, sample_batched in enumerate(dataloader_val):
# get the inputs
inputs, spoof_label = sample_batched['image_x'].cuda(), sample_batched['spoofing_label'].cuda()
val_maps = sample_batched['val_map_x'].cuda() # binary map from PRNet
optimizer.zero_grad()
# pdb.set_trace()
map_score = 0.0
for frame_t in range(inputs.shape[1]):
mu, logvar, map_x, x_concat, x_Block1, x_Block2, x_Block3, x_input = model(
inputs[:, frame_t, :, :, :])
score_norm = torch.sum(mu) / torch.sum(val_maps[:, frame_t, :, :])
map_score += score_norm
map_score = map_score / inputs.shape[1]
map_score_list.append('{} {}\n'.format(map_score, spoof_label[0][0]))
# pdb.set_trace()
map_score_val_filename = args.log + '/' + args.log + '_map_score_val.txt'
with open(map_score_val_filename, 'w') as file:
file.writelines(map_score_list)
###########################################
''' test '''
##########################################
# test for ACC
test_data = Spoofing_valtest(test_list, test_image_dir, test_map_dir,
transform=transforms.Compose([Normaliztion_valtest(), ToTensor_valtest()]))
dataloader_test = DataLoader(test_data, batch_size=1, shuffle=False, num_workers=4)
map_score_list = []
for i, sample_batched in enumerate(dataloader_test):
# get the inputs
inputs, spoof_label = sample_batched['image_x'].cuda(), sample_batched['spoofing_label'].cuda()
test_maps = sample_batched['val_map_x'].cuda()
optimizer.zero_grad()
# pdb.set_trace()
map_score = 0.0
for frame_t in range(inputs.shape[1]):
mu, logvar, map_x, x_concat, x_Block1, x_Block2, x_Block3, x_input = model(
inputs[:, frame_t, :, :, :])
score_norm = torch.sum(mu) / torch.sum(test_maps[:, frame_t, :, :])
map_score += score_norm
map_score = map_score / inputs.shape[1]
map_score_list.append('{} {}\n'.format(map_score, spoof_label[0][0]))
map_score_test_filename = args.log + '/' + args.log + '_map_score_test.txt'
with open(map_score_test_filename, 'w') as file:
file.writelines(map_score_list)
#############################################################
# performance measurement both val and test
#############################################################
val_threshold, test_threshold, val_ACC, val_ACER, test_ACC, test_APCER, test_BPCER, test_ACER, test_ACER_test_threshold = performances(
map_score_val_filename, map_score_test_filename)
print('epoch:%d, Val: val_threshold= %.4f, val_ACC= %.4f, val_ACER= %.4f' % (
epoch + 1, val_threshold, val_ACC, val_ACER))
log_file.write('\n epoch:%d, Val: val_threshold= %.4f, val_ACC= %.4f, val_ACER= %.4f \n' % (
epoch + 1, val_threshold, val_ACC, val_ACER))
print('epoch:%d, Test: ACC= %.4f, APCER= %.4f, BPCER= %.4f, ACER= %.4f' % (
epoch + 1, test_ACC, test_APCER, test_BPCER, test_ACER))
log_file.write('epoch:%d, Test: ACC= %.4f, APCER= %.4f, BPCER= %.4f, ACER= %.4f \n' % (
epoch + 1, test_ACC, test_APCER, test_BPCER, test_ACER))
log_file.flush()
print('Finished Training')
log_file.close()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="save quality using landmarkpose model")
parser.add_argument('--gpus', type=str, default='0,1,2,3', help='the gpu id used for predict')
parser.add_argument('--lr', type=float, default=0.001, help='initial learning rate')
parser.add_argument('--batchsize', type=int, default=32, help='initial batchsize')
parser.add_argument('--step_size', type=int, default=500, help='how many epochs lr decays once') # 500
parser.add_argument('--gamma', type=float, default=0.5, help='gamma of optim.lr_scheduler.StepLR, decay of lr')
parser.add_argument('--kl_lambda', type=float, default=0.001, help='')
parser.add_argument('--echo_batches', type=int, default=50, help='how many batches display once') # 50
parser.add_argument('--epochs', type=int, default=1, help='total training epochs')
parser.add_argument('--log', type=str, default="CDCN_U_P1_test", help='log and save model name')
parser.add_argument('--finetune', action='store_true', default=False, help='whether finetune other models')
parser.add_argument('--test', action='store_true', default=True, help='')
args = parser.parse_args()
test()
|