File size: 7,540 Bytes
e437acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
from __future__ import print_function, division
import torch

torch.set_printoptions(profile="full")
import matplotlib.pyplot as plt
import argparse, os
import numpy as np
import shutil
from torch.utils.data import DataLoader
from torchvision import transforms

from models.CDCNs_u import Conv2d_cd, CDCN_u

from Load_OULUNPUcrop_valtest import Spoofing_valtest, Normaliztion_valtest, ToTensor_valtest

import torch.optim as optim

from utils import performances

# Dataset root

val_image_dir = '/export2/home/wht/oulu_img_crop/dev_file_flod/'
test_image_dir = '/export2/home/wht/oulu_img_crop/test_file_flod/'

val_map_dir = '/export2/home/wht/oulu_img_crop/dev_depth_flod/'
test_map_dir = '/export2/home/wht/oulu_img_crop/test_depth_flod/'

val_list = '/export2/home/wht/oulu_img_crop/protocols/Protocol_1/Dev.txt'
test_list = '/export2/home/wht/oulu_img_crop/protocols/Protocol_1/Test.txt'


# main function
def test():
    # GPU  & log file  -->   if use DataParallel, please comment this command
    os.environ["CUDA_VISIBLE_DEVICES"] = '0, 1, 2, 3'

    isExists = os.path.exists(args.log)
    if not isExists:
        os.makedirs(args.log)
    log_file = open(args.log + '/' + args.log + '_log_P1.txt', 'w')

    log_file.write('Oulu-NPU, P1:\n ')
    log_file.flush()

    print('test!\n')
    log_file.write('test!\n')
    log_file.flush()

    model = CDCN_u(basic_conv=Conv2d_cd, theta=0.7)
    # model = ResNet18_u()

    model = model.cuda()
    model = torch.nn.DataParallel(model)
    model.load_state_dict(torch.load('./DUM/checkpoint/CDCN_U_P1.pkl', map_location='cuda:0'))

    print(model)

    optimizer = optim.Adam(model.parameters(), lr=0.001, weight_decay=0.00005)

    for epoch in range(args.epochs):

        model.eval()

        with torch.no_grad():
            ###########################################
            '''                val             '''
            ###########################################
            # val for threshold
            val_data = Spoofing_valtest(val_list, val_image_dir, val_map_dir,
                                        transform=transforms.Compose([Normaliztion_valtest(), ToTensor_valtest()]))
            dataloader_val = DataLoader(val_data, batch_size=1, shuffle=False, num_workers=4)

            map_score_list = []

            for i, sample_batched in enumerate(dataloader_val):
                # get the inputs
                inputs, spoof_label = sample_batched['image_x'].cuda(), sample_batched['spoofing_label'].cuda()
                val_maps = sample_batched['val_map_x'].cuda()  # binary map from PRNet

                optimizer.zero_grad()

                # pdb.set_trace()
                map_score = 0.0
                for frame_t in range(inputs.shape[1]):
                    mu, logvar, map_x, x_concat, x_Block1, x_Block2, x_Block3, x_input = model(
                        inputs[:, frame_t, :, :, :])
                    score_norm = torch.sum(mu) / torch.sum(val_maps[:, frame_t, :, :])
                    map_score += score_norm

                map_score = map_score / inputs.shape[1]

                map_score_list.append('{} {}\n'.format(map_score, spoof_label[0][0]))
                # pdb.set_trace()
            map_score_val_filename = args.log + '/' + args.log + '_map_score_val.txt'
            with open(map_score_val_filename, 'w') as file:
                file.writelines(map_score_list)

            ###########################################
            '''                test             '''
            ##########################################
            # test for ACC
            test_data = Spoofing_valtest(test_list, test_image_dir, test_map_dir,
                                         transform=transforms.Compose([Normaliztion_valtest(), ToTensor_valtest()]))
            dataloader_test = DataLoader(test_data, batch_size=1, shuffle=False, num_workers=4)

            map_score_list = []

            for i, sample_batched in enumerate(dataloader_test):
                # get the inputs
                inputs, spoof_label = sample_batched['image_x'].cuda(), sample_batched['spoofing_label'].cuda()
                test_maps = sample_batched['val_map_x'].cuda()

                optimizer.zero_grad()

                # pdb.set_trace()
                map_score = 0.0
                for frame_t in range(inputs.shape[1]):
                    mu, logvar, map_x, x_concat, x_Block1, x_Block2, x_Block3, x_input = model(
                        inputs[:, frame_t, :, :, :])

                    score_norm = torch.sum(mu) / torch.sum(test_maps[:, frame_t, :, :])
                    map_score += score_norm

                map_score = map_score / inputs.shape[1]

                map_score_list.append('{} {}\n'.format(map_score, spoof_label[0][0]))

            map_score_test_filename = args.log + '/' + args.log + '_map_score_test.txt'
            with open(map_score_test_filename, 'w') as file:
                file.writelines(map_score_list)

            #############################################################
            #       performance measurement both val and test
            #############################################################
            val_threshold, test_threshold, val_ACC, val_ACER, test_ACC, test_APCER, test_BPCER, test_ACER, test_ACER_test_threshold = performances(
                map_score_val_filename, map_score_test_filename)

            print('epoch:%d, Val:  val_threshold= %.4f, val_ACC= %.4f, val_ACER= %.4f' % (
                epoch + 1, val_threshold, val_ACC, val_ACER))
            log_file.write('\n epoch:%d, Val:  val_threshold= %.4f, val_ACC= %.4f, val_ACER= %.4f \n' % (
                epoch + 1, val_threshold, val_ACC, val_ACER))

            print('epoch:%d, Test:  ACC= %.4f, APCER= %.4f, BPCER= %.4f, ACER= %.4f' % (
                epoch + 1, test_ACC, test_APCER, test_BPCER, test_ACER))
            log_file.write('epoch:%d, Test:  ACC= %.4f, APCER= %.4f, BPCER= %.4f, ACER= %.4f \n' % (
                epoch + 1, test_ACC, test_APCER, test_BPCER, test_ACER))
            log_file.flush()

    print('Finished Training')
    log_file.close()


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="save quality using landmarkpose model")
    parser.add_argument('--gpus', type=str, default='0,1,2,3', help='the gpu id used for predict')
    parser.add_argument('--lr', type=float, default=0.001, help='initial learning rate')
    parser.add_argument('--batchsize', type=int, default=32, help='initial batchsize')
    parser.add_argument('--step_size', type=int, default=500, help='how many epochs lr decays once')  # 500
    parser.add_argument('--gamma', type=float, default=0.5, help='gamma of optim.lr_scheduler.StepLR, decay of lr')
    parser.add_argument('--kl_lambda', type=float, default=0.001, help='')
    parser.add_argument('--echo_batches', type=int, default=50, help='how many batches display once')  # 50
    parser.add_argument('--epochs', type=int, default=1, help='total training epochs')
    parser.add_argument('--log', type=str, default="CDCN_U_P1_test", help='log and save model name')
    parser.add_argument('--finetune', action='store_true', default=False, help='whether finetune other models')
    parser.add_argument('--test', action='store_true', default=True, help='')

    args = parser.parse_args()
    test()