File size: 13,856 Bytes
e437acb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
from __future__ import print_function, division
import torch
import matplotlib.pyplot as plt
import argparse, os
import numpy as np
from torch.utils.data import DataLoader
from torchvision import transforms

from models.CDCNs_u import Conv2d_cd, CDCN_u

from Load_OULUNPUcrop_train import Spoofing_train_g, SeparateBatchSampler, Normaliztion, ToTensor, \
    RandomHorizontalFlip, Cutout, RandomErasing
from Load_OULUNPUcrop_valtest import Spoofing_valtest, Normaliztion_valtest, ToTensor_valtest

import torch.nn.functional as F
import torch.nn as nn
import torch.optim as optim

from utils import AvgrageMeter, performances

# Dataset root
train_image_dir = '/export2/home/wht/oulu_img_crop/train_file_flod/'
val_image_dir = '/export2/home/wht/oulu_img_crop/dev_file_flod/'
test_image_dir = '/export2/home/wht/oulu_img_crop/test_file_flod/'

train_map_dir = '/export2/home/wht/oulu_img_crop/train_depth_flod/'
val_map_dir = '/export2/home/wht/oulu_img_crop/dev_depth_flod/'
test_map_dir = '/export2/home/wht/oulu_img_crop/test_depth_flod/'

train_list = '/export2/home/wht/oulu_img_crop/protocols/Protocol_1/Train_g.txt'
val_list = '/export2/home/wht/oulu_img_crop/protocols/Protocol_1/Dev.txt'
test_list = '/export2/home/wht/oulu_img_crop/protocols/Protocol_1/Test.txt'


def contrast_depth_conv(input):
    ''' compute contrast depth in both of (out, label) '''
    '''

        input  32x32

        output 8x32x32

    '''

    kernel_filter_list = [
        [[1, 0, 0], [0, -1, 0], [0, 0, 0]], [[0, 1, 0], [0, -1, 0], [0, 0, 0]], [[0, 0, 1], [0, -1, 0], [0, 0, 0]],
        [[0, 0, 0], [1, -1, 0], [0, 0, 0]], [[0, 0, 0], [0, -1, 1], [0, 0, 0]],
        [[0, 0, 0], [0, -1, 0], [1, 0, 0]], [[0, 0, 0], [0, -1, 0], [0, 1, 0]], [[0, 0, 0], [0, -1, 0], [0, 0, 1]]
    ]

    kernel_filter = np.array(kernel_filter_list, np.float32)

    kernel_filter = torch.from_numpy(kernel_filter.astype(np.float)).float().cuda()
    # weights (in_channel, out_channel, kernel, kernel)
    kernel_filter = kernel_filter.unsqueeze(dim=1)

    input = input.unsqueeze(dim=1).expand(input.shape[0], 8, input.shape[1], input.shape[2])

    contrast_depth = F.conv2d(input, weight=kernel_filter, groups=8)

    return contrast_depth


class Contrast_depth_loss(nn.Module):
    def __init__(self):
        super(Contrast_depth_loss, self).__init__()
        return

    def forward(self, out, label):
        contrast_out = contrast_depth_conv(out)
        contrast_label = contrast_depth_conv(label)

        criterion_MSE = nn.MSELoss().cuda()

        loss = criterion_MSE(contrast_out, contrast_label)

        return loss


def train_test():
    isExists = os.path.exists(args.log)
    if not isExists:
        os.makedirs(args.log)
    log_file = open(args.log + '/' + args.log + '_log_P1.txt', 'a')

    log_file.write('Oulu-NPU, P1:\n ')
    log_file.flush()

    print('train from scratch!\n')
    log_file.write('train from scratch!\n')
    log_file.write('lr:%.6f, lamda_kl:%.6f , batchsize:%d\n' % (args.lr, args.kl_lambda, args.batchsize))
    log_file.flush()

    model = CDCN_u(basic_conv=Conv2d_cd, theta=0.7)
    # model = ResNet18_u()

    model = model.cuda()
    model = torch.nn.DataParallel(model)

    lr = args.lr
    optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=0.00005)
    scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)

    print(model)

    criterion_absolute_loss = nn.MSELoss().cuda()
    criterion_contrastive_loss = Contrast_depth_loss().cuda()

    for epoch in range(args.epochs):
        if (epoch + 1) % args.step_size == 0:
            lr *= args.gamma

        loss_absolute_real = AvgrageMeter()
        loss_absolute_fake = AvgrageMeter()
        loss_contra_real = AvgrageMeter()
        loss_contra_fake = AvgrageMeter()
        loss_kl_real = AvgrageMeter()
        loss_kl_fake = AvgrageMeter()

        ###########################################
        '''                train             '''
        ###########################################
        model.train()

        # load random 16-frame clip data every epoch
        train_data = Spoofing_train_g(train_list, train_image_dir, train_map_dir,
                                      transform=transforms.Compose(
                                          [RandomErasing(), RandomHorizontalFlip(), ToTensor(), Cutout(),
                                           Normaliztion()]))
        train_real_idx, train_fake_idx = train_data.get_idx()
        batch_sampler = SeparateBatchSampler(train_real_idx, train_fake_idx, batch_size=args.batchsize, ratio=args.ratio)
        dataloader_train = DataLoader(train_data, num_workers=8, batch_sampler=batch_sampler)

        for i, sample_batched in enumerate(dataloader_train):
            # get the inputs
            inputs, map_label, spoof_label = sample_batched['image_x'].cuda(), sample_batched['map_x'].cuda(), \
                                             sample_batched['spoofing_label'].cuda()

            optimizer.zero_grad()

            # forward + backward + optimize
            mu, logvar, map_x, x_concat, x_Block1, x_Block2, x_Block3, x_input = model(inputs)

            mu_real = mu[:int(args.batchsize * args.ratio), :, :]
            logvar_real = logvar[:int(args.batchsize * args.ratio), :, :]
            map_x_real = map_x[:int(args.batchsize * args.ratio), :, :]
            map_label_real = map_label[:int(args.batchsize * args.ratio), :, :]

            absolute_loss_real = criterion_absolute_loss(map_x_real, map_label_real)
            contrastive_loss_real = criterion_contrastive_loss(map_x_real, map_label_real)
            kl_loss_real = -(1 + logvar_real - (mu_real - map_label_real).pow(2) - logvar_real.exp()) / 2
            kl_loss_real = kl_loss_real.sum(dim=1).sum(dim=1).mean()
            kl_loss_real = args.kl_lambda * kl_loss_real

            mu_fake = mu[int(args.batchsize * args.ratio):, :, :]
            logvar_fake = logvar[int(args.batchsize * args.ratio):, :, :]
            map_x_fake = map_x[int(args.batchsize * args.ratio):, :, :]
            map_label_fake = map_label[int(args.batchsize * args.ratio):, :, :]

            absolute_loss_fake = 0.1 * criterion_absolute_loss(map_x_fake, map_label_fake)
            contrastive_loss_fake = 0.1 * criterion_contrastive_loss(map_x_fake, map_label_fake)
            kl_loss_fake = -(1 + logvar_fake - (mu_fake - map_label_fake).pow(2) - logvar_fake.exp()) / 2
            kl_loss_fake = kl_loss_fake.sum(dim=1).sum(dim=1).mean()
            kl_loss_fake = 0.1 * args.kl_lambda * kl_loss_fake

            absolute_loss = absolute_loss_real + absolute_loss_fake
            contrastive_loss = contrastive_loss_real + contrastive_loss_fake
            kl_loss = kl_loss_real + kl_loss_fake

            loss = absolute_loss + contrastive_loss + kl_loss

            loss.backward()

            optimizer.step()

            n = inputs.size(0)
            loss_absolute_real.update(absolute_loss_real.data, n)
            loss_absolute_fake.update(absolute_loss_fake.data, n)
            loss_contra_real.update(contrastive_loss_real.data, n)
            loss_contra_fake.update(contrastive_loss_fake.data, n)
            loss_kl_real.update(kl_loss_real.data, n)
            loss_kl_fake.update(kl_loss_fake.data, n)

        scheduler.step()
        # whole epoch average
        print(
            'epoch:%d, Train:  Absolute_loss: real=%.4f,fake=%.4f, '
            'Contrastive_loss: real=%.4f,fake=%.4f, kl_loss: real=%.4f,fake=%.4f' % (
                epoch + 1, loss_absolute_real.avg, loss_absolute_fake.avg, loss_contra_real.avg, loss_contra_fake.avg,
                loss_kl_real.avg, loss_kl_fake.avg))

        # validation/test
        if epoch < 200:
            epoch_test = 200
        else:
            epoch_test = 50
        # epoch_test = 1
        if epoch % epoch_test == epoch_test - 1:
            model.eval()

            with torch.no_grad():
                ###########################################
                '''                val             '''
                ###########################################
                # val for threshold
                val_data = Spoofing_valtest(val_list, val_image_dir, val_map_dir,
                                            transform=transforms.Compose([Normaliztion_valtest(), ToTensor_valtest()]))
                dataloader_val = DataLoader(val_data, batch_size=1, shuffle=False, num_workers=4)

                map_score_list = []

                for i, sample_batched in enumerate(dataloader_val):
                    # get the inputs
                    inputs, spoof_label = sample_batched['image_x'].cuda(), sample_batched['spoofing_label'].cuda()
                    val_maps = sample_batched['val_map_x'].cuda()  # binary map from PRNet

                    optimizer.zero_grad()

                    mu, logvar, map_x, x_concat, x_Block1, x_Block2, x_Block3, x_input = model(inputs.squeeze(0))
                    score_norm = mu.sum(dim=1).sum(dim=1) / val_maps.squeeze(0).sum(dim=1).sum(dim=1)
                    map_score = score_norm.mean()
                    map_score_list.append('{} {}\n'.format(map_score, spoof_label[0][0]))

                map_score_val_filename = args.log + '/' + args.log + '_map_score_val.txt'
                with open(map_score_val_filename, 'w') as file:
                    file.writelines(map_score_list)

                ###########################################
                '''                test             '''
                ##########################################
                # test for ACC
                test_data = Spoofing_valtest(test_list, test_image_dir, test_map_dir,
                                             transform=transforms.Compose([Normaliztion_valtest(), ToTensor_valtest()]))
                dataloader_test = DataLoader(test_data, batch_size=1, shuffle=False, num_workers=4)

                map_score_list = []

                for i, sample_batched in enumerate(dataloader_test):
                    # get the inputs
                    inputs, spoof_label = sample_batched['image_x'].cuda(), sample_batched['spoofing_label'].cuda()
                    test_maps = sample_batched['val_map_x'].cuda()

                    optimizer.zero_grad()
                    mu, logvar, map_x, x_concat, x_Block1, x_Block2, x_Block3, x_input = model(inputs.squeeze(0))
                    score_norm = mu.sum(dim=1).sum(dim=1) / test_maps.squeeze(0).sum(dim=1).sum(dim=1)
                    map_score = score_norm.mean()
                    map_score_list.append('{} {}\n'.format(map_score, spoof_label[0][0]))

                map_score_test_filename = args.log + '/' + args.log + '_map_score_test.txt'
                with open(map_score_test_filename, 'w') as file:
                    file.writelines(map_score_list)

                #############################################################
                #       performance measurement both val and test
                #############################################################
                val_threshold, test_threshold, val_ACC, val_ACER, test_ACC, test_APCER, test_BPCER, test_ACER, test_ACER_test_threshold = performances(
                    map_score_val_filename, map_score_test_filename)

                print('epoch:%d, Val:  val_threshold= %.4f, val_ACC= %.4f, val_ACER= %.4f' % (
                    epoch + 1, val_threshold, val_ACC, val_ACER))
                log_file.write('\n epoch:%d, Val:  val_threshold= %.4f, val_ACC= %.4f, val_ACER= %.4f \n' % (
                    epoch + 1, val_threshold, val_ACC, val_ACER))

                print('epoch:%d, Test:  ACC= %.4f, APCER= %.4f, BPCER= %.4f, ACER= %.4f' % (
                    epoch + 1, test_ACC, test_APCER, test_BPCER, test_ACER))
                log_file.write('epoch:%d, Test:  ACC= %.4f, APCER= %.4f, BPCER= %.4f, ACER= %.4f \n' % (
                    epoch + 1, test_ACC, test_APCER, test_BPCER, test_ACER))
                log_file.flush()

        if epoch % epoch_test == epoch_test - 1:
            # save the model until the next improvement
            torch.save(model.state_dict(), args.log + '/' + args.log + '_%d.pkl' % (epoch + 1))

    print('Finished Training')
    log_file.close()

if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="save quality using landmarkpose model")
    parser.add_argument('--gpus', type=str, default='0, 1, 2, 3', help='the gpu id used for predict')
    parser.add_argument('--lr', type=float, default=0.0001, help='initial learning rate')
    parser.add_argument('--batchsize', type=int, default=64, help='initial batchsize')
    parser.add_argument('--step_size', type=int, default=500, help='how many epochs lr decays once')  # 500
    parser.add_argument('--gamma', type=float, default=0.5, help='gamma of optim.lr_scheduler.StepLR, decay of lr')
    parser.add_argument('--kl_lambda', type=float, default=0.001, help='')
    parser.add_argument('--ratio', type=float, default=0.75, help='real and fake in batchsize ')
    parser.add_argument('--echo_batches', type=int, default=50, help='how many batches display once')  # 50
    parser.add_argument('--epochs', type=int, default=1600, help='total training epochs')
    parser.add_argument('--log', type=str, default="CDCN_U_P1", help='log and save model name')
    parser.add_argument('--finetune', action='store_true', default=False, help='whether finetune other models')

    args = parser.parse_args()
    train_test()