File size: 8,322 Bytes
ddadf19 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 |
# coding: utf-8
import torch.nn as nn
import torch.nn.functional as F
__all__ = ['MobileNetV3', 'mobilenet_v3']
def conv_bn(inp, oup, stride, conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, nlin_layer=nn.ReLU):
return nn.Sequential(
conv_layer(inp, oup, 3, stride, 1, bias=False),
norm_layer(oup),
nlin_layer(inplace=True)
)
def conv_1x1_bn(inp, oup, conv_layer=nn.Conv2d, norm_layer=nn.BatchNorm2d, nlin_layer=nn.ReLU):
return nn.Sequential(
conv_layer(inp, oup, 1, 1, 0, bias=False),
norm_layer(oup),
nlin_layer(inplace=True)
)
class Hswish(nn.Module):
def __init__(self, inplace=True):
super(Hswish, self).__init__()
self.inplace = inplace
def forward(self, x):
return x * F.relu6(x + 3., inplace=self.inplace) / 6.
class Hsigmoid(nn.Module):
def __init__(self, inplace=True):
super(Hsigmoid, self).__init__()
self.inplace = inplace
def forward(self, x):
return F.relu6(x + 3., inplace=self.inplace) / 6.
class SEModule(nn.Module):
def __init__(self, channel, reduction=4):
super(SEModule, self).__init__()
self.avg_pool = nn.AdaptiveAvgPool2d(1)
self.fc = nn.Sequential(
nn.Linear(channel, channel // reduction, bias=False),
nn.ReLU(inplace=True),
nn.Linear(channel // reduction, channel, bias=False),
Hsigmoid()
# nn.Sigmoid()
)
def forward(self, x):
b, c, _, _ = x.size()
y = self.avg_pool(x).view(b, c)
y = self.fc(y).view(b, c, 1, 1)
return x * y.expand_as(x)
class Identity(nn.Module):
def __init__(self, channel):
super(Identity, self).__init__()
def forward(self, x):
return x
def make_divisible(x, divisible_by=8):
import numpy as np
return int(np.ceil(x * 1. / divisible_by) * divisible_by)
class MobileBottleneck(nn.Module):
def __init__(self, inp, oup, kernel, stride, exp, se=False, nl='RE'):
super(MobileBottleneck, self).__init__()
assert stride in [1, 2]
assert kernel in [3, 5]
padding = (kernel - 1) // 2
self.use_res_connect = stride == 1 and inp == oup
conv_layer = nn.Conv2d
norm_layer = nn.BatchNorm2d
if nl == 'RE':
nlin_layer = nn.ReLU # or ReLU6
elif nl == 'HS':
nlin_layer = Hswish
else:
raise NotImplementedError
if se:
SELayer = SEModule
else:
SELayer = Identity
self.conv = nn.Sequential(
# pw
conv_layer(inp, exp, 1, 1, 0, bias=False),
norm_layer(exp),
nlin_layer(inplace=True),
# dw
conv_layer(exp, exp, kernel, stride, padding, groups=exp, bias=False),
norm_layer(exp),
SELayer(exp),
nlin_layer(inplace=True),
# pw-linear
conv_layer(exp, oup, 1, 1, 0, bias=False),
norm_layer(oup),
)
def forward(self, x):
if self.use_res_connect:
return x + self.conv(x)
else:
return self.conv(x)
class MobileNetV3(nn.Module):
def __init__(self, widen_factor=1.0, num_classes=141, num_landmarks=136, input_size=120, mode='small'):
super(MobileNetV3, self).__init__()
input_channel = 16
last_channel = 1280
if mode == 'large':
# refer to Table 1 in paper
mobile_setting = [
# k, exp, c, se, nl, s,
[3, 16, 16, False, 'RE', 1],
[3, 64, 24, False, 'RE', 2],
[3, 72, 24, False, 'RE', 1],
[5, 72, 40, True, 'RE', 2],
[5, 120, 40, True, 'RE', 1],
[5, 120, 40, True, 'RE', 1],
[3, 240, 80, False, 'HS', 2],
[3, 200, 80, False, 'HS', 1],
[3, 184, 80, False, 'HS', 1],
[3, 184, 80, False, 'HS', 1],
[3, 480, 112, True, 'HS', 1],
[3, 672, 112, True, 'HS', 1],
[5, 672, 160, True, 'HS', 2],
[5, 960, 160, True, 'HS', 1],
[5, 960, 160, True, 'HS', 1],
]
elif mode == 'small':
# refer to Table 2 in paper
mobile_setting = [
# k, exp, c, se, nl, s,
[3, 16, 16, True, 'RE', 2],
[3, 72, 24, False, 'RE', 2],
[3, 88, 24, False, 'RE', 1],
[5, 96, 40, True, 'HS', 2],
[5, 240, 40, True, 'HS', 1],
[5, 240, 40, True, 'HS', 1],
[5, 120, 48, True, 'HS', 1],
[5, 144, 48, True, 'HS', 1],
[5, 288, 96, True, 'HS', 2],
[5, 576, 96, True, 'HS', 1],
[5, 576, 96, True, 'HS', 1],
]
else:
raise NotImplementedError
# building first layer
assert input_size % 32 == 0
last_channel = make_divisible(last_channel * widen_factor) if widen_factor > 1.0 else last_channel
self.features = [conv_bn(3, input_channel, 2, nlin_layer=Hswish)]
# self.classifier = []
# building mobile blocks
for k, exp, c, se, nl, s in mobile_setting:
output_channel = make_divisible(c * widen_factor)
exp_channel = make_divisible(exp * widen_factor)
self.features.append(MobileBottleneck(input_channel, output_channel, k, s, exp_channel, se, nl))
input_channel = output_channel
# building last several layers
if mode == 'large':
last_conv = make_divisible(960 * widen_factor)
self.features.append(conv_1x1_bn(input_channel, last_conv, nlin_layer=Hswish))
self.features.append(nn.AdaptiveAvgPool2d(1))
self.features.append(nn.Conv2d(last_conv, last_channel, 1, 1, 0))
self.features.append(Hswish(inplace=True))
elif mode == 'small':
last_conv = make_divisible(576 * widen_factor)
self.features.append(conv_1x1_bn(input_channel, last_conv, nlin_layer=Hswish))
# self.features.append(SEModule(last_conv)) # refer to paper Table2, but I think this is a mistake
self.features.append(nn.AdaptiveAvgPool2d(1))
self.features.append(nn.Conv2d(last_conv, last_channel, 1, 1, 0))
self.features.append(Hswish(inplace=True))
else:
raise NotImplementedError
# make it nn.Sequential
self.features = nn.Sequential(*self.features)
# self.fc_param = nn.Linear(int(last_channel), num_classes)
self.fc = nn.Linear(int(last_channel), num_classes)
# self.fc_lm = nn.Linear(int(last_channel), num_landmarks)
# building classifier
# self.classifier = nn.Sequential(
# nn.Dropout(p=dropout), # refer to paper section 6
# nn.Linear(last_channel, n_class),
# )
self._initialize_weights()
def forward(self, x):
x = self.features(x)
x_share = x.mean(3).mean(2)
# x = self.classifier(x)
# print(x_share.shape)
# xp = self.fc_param(x_share) # param
# xl = self.fc_lm(x_share) # lm
xp = self.fc(x_share) # param
return xp # , xl
def _initialize_weights(self):
# weight initialization
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out')
if m.bias is not None:
nn.init.zeros_(m.bias)
elif isinstance(m, nn.BatchNorm2d):
nn.init.ones_(m.weight)
nn.init.zeros_(m.bias)
elif isinstance(m, nn.Linear):
nn.init.normal_(m.weight, 0, 0.01)
if m.bias is not None:
nn.init.zeros_(m.bias)
def mobilenet_v3(**kwargs):
model = MobileNetV3(
widen_factor=kwargs.get('widen_factor', 1.0),
num_classes=kwargs.get('num_classes', 62),
num_landmarks=kwargs.get('num_landmarks', 136),
input_size=kwargs.get('size', 128),
mode=kwargs.get('mode', 'small')
)
return model
|