|
from __future__ import print_function, division
|
|
import torch
|
|
import matplotlib.pyplot as plt
|
|
import argparse, os
|
|
import numpy as np
|
|
from torch.utils.data import DataLoader
|
|
from torchvision import transforms
|
|
|
|
from models.CDCNs_u import Conv2d_cd, CDCN_u
|
|
|
|
from Load_OULUNPUcrop_train import Spoofing_train_g, SeparateBatchSampler, Normaliztion, ToTensor, \
|
|
RandomHorizontalFlip, Cutout, RandomErasing
|
|
from Load_OULUNPUcrop_valtest import Spoofing_valtest, Normaliztion_valtest, ToTensor_valtest
|
|
|
|
import torch.nn.functional as F
|
|
import torch.nn as nn
|
|
import torch.optim as optim
|
|
|
|
from utils import AvgrageMeter, performances
|
|
|
|
|
|
train_image_dir = '/export2/home/wht/oulu_img_crop/train_file_flod/'
|
|
val_image_dir = '/export2/home/wht/oulu_img_crop/dev_file_flod/'
|
|
test_image_dir = '/export2/home/wht/oulu_img_crop/test_file_flod/'
|
|
|
|
train_map_dir = '/export2/home/wht/oulu_img_crop/train_depth_flod/'
|
|
val_map_dir = '/export2/home/wht/oulu_img_crop/dev_depth_flod/'
|
|
test_map_dir = '/export2/home/wht/oulu_img_crop/test_depth_flod/'
|
|
|
|
train_list = '/export2/home/wht/oulu_img_crop/protocols/Protocol_1/Train_g.txt'
|
|
val_list = '/export2/home/wht/oulu_img_crop/protocols/Protocol_1/Dev.txt'
|
|
test_list = '/export2/home/wht/oulu_img_crop/protocols/Protocol_1/Test.txt'
|
|
|
|
|
|
def contrast_depth_conv(input):
|
|
''' compute contrast depth in both of (out, label) '''
|
|
'''
|
|
input 32x32
|
|
output 8x32x32
|
|
'''
|
|
|
|
kernel_filter_list = [
|
|
[[1, 0, 0], [0, -1, 0], [0, 0, 0]], [[0, 1, 0], [0, -1, 0], [0, 0, 0]], [[0, 0, 1], [0, -1, 0], [0, 0, 0]],
|
|
[[0, 0, 0], [1, -1, 0], [0, 0, 0]], [[0, 0, 0], [0, -1, 1], [0, 0, 0]],
|
|
[[0, 0, 0], [0, -1, 0], [1, 0, 0]], [[0, 0, 0], [0, -1, 0], [0, 1, 0]], [[0, 0, 0], [0, -1, 0], [0, 0, 1]]
|
|
]
|
|
|
|
kernel_filter = np.array(kernel_filter_list, np.float32)
|
|
|
|
kernel_filter = torch.from_numpy(kernel_filter.astype(np.float)).float().cuda()
|
|
|
|
kernel_filter = kernel_filter.unsqueeze(dim=1)
|
|
|
|
input = input.unsqueeze(dim=1).expand(input.shape[0], 8, input.shape[1], input.shape[2])
|
|
|
|
contrast_depth = F.conv2d(input, weight=kernel_filter, groups=8)
|
|
|
|
return contrast_depth
|
|
|
|
|
|
class Contrast_depth_loss(nn.Module):
|
|
def __init__(self):
|
|
super(Contrast_depth_loss, self).__init__()
|
|
return
|
|
|
|
def forward(self, out, label):
|
|
contrast_out = contrast_depth_conv(out)
|
|
contrast_label = contrast_depth_conv(label)
|
|
|
|
criterion_MSE = nn.MSELoss().cuda()
|
|
|
|
loss = criterion_MSE(contrast_out, contrast_label)
|
|
|
|
return loss
|
|
|
|
|
|
def train_test():
|
|
isExists = os.path.exists(args.log)
|
|
if not isExists:
|
|
os.makedirs(args.log)
|
|
log_file = open(args.log + '/' + args.log + '_log_P1.txt', 'a')
|
|
|
|
log_file.write('Oulu-NPU, P1:\n ')
|
|
log_file.flush()
|
|
|
|
print('train from scratch!\n')
|
|
log_file.write('train from scratch!\n')
|
|
log_file.write('lr:%.6f, lamda_kl:%.6f , batchsize:%d\n' % (args.lr, args.kl_lambda, args.batchsize))
|
|
log_file.flush()
|
|
|
|
model = CDCN_u(basic_conv=Conv2d_cd, theta=0.7)
|
|
|
|
|
|
model = model.cuda()
|
|
model = torch.nn.DataParallel(model)
|
|
|
|
lr = args.lr
|
|
optimizer = optim.Adam(model.parameters(), lr=lr, weight_decay=0.00005)
|
|
scheduler = optim.lr_scheduler.StepLR(optimizer, step_size=args.step_size, gamma=args.gamma)
|
|
|
|
print(model)
|
|
|
|
criterion_absolute_loss = nn.MSELoss().cuda()
|
|
criterion_contrastive_loss = Contrast_depth_loss().cuda()
|
|
|
|
for epoch in range(args.epochs):
|
|
if (epoch + 1) % args.step_size == 0:
|
|
lr *= args.gamma
|
|
|
|
loss_absolute_real = AvgrageMeter()
|
|
loss_absolute_fake = AvgrageMeter()
|
|
loss_contra_real = AvgrageMeter()
|
|
loss_contra_fake = AvgrageMeter()
|
|
loss_kl_real = AvgrageMeter()
|
|
loss_kl_fake = AvgrageMeter()
|
|
|
|
|
|
''' train '''
|
|
|
|
model.train()
|
|
|
|
|
|
train_data = Spoofing_train_g(train_list, train_image_dir, train_map_dir,
|
|
transform=transforms.Compose(
|
|
[RandomErasing(), RandomHorizontalFlip(), ToTensor(), Cutout(),
|
|
Normaliztion()]))
|
|
train_real_idx, train_fake_idx = train_data.get_idx()
|
|
batch_sampler = SeparateBatchSampler(train_real_idx, train_fake_idx, batch_size=args.batchsize, ratio=args.ratio)
|
|
dataloader_train = DataLoader(train_data, num_workers=8, batch_sampler=batch_sampler)
|
|
|
|
for i, sample_batched in enumerate(dataloader_train):
|
|
|
|
inputs, map_label, spoof_label = sample_batched['image_x'].cuda(), sample_batched['map_x'].cuda(), \
|
|
sample_batched['spoofing_label'].cuda()
|
|
|
|
optimizer.zero_grad()
|
|
|
|
|
|
mu, logvar, map_x, x_concat, x_Block1, x_Block2, x_Block3, x_input = model(inputs)
|
|
|
|
mu_real = mu[:int(args.batchsize * args.ratio), :, :]
|
|
logvar_real = logvar[:int(args.batchsize * args.ratio), :, :]
|
|
map_x_real = map_x[:int(args.batchsize * args.ratio), :, :]
|
|
map_label_real = map_label[:int(args.batchsize * args.ratio), :, :]
|
|
|
|
absolute_loss_real = criterion_absolute_loss(map_x_real, map_label_real)
|
|
contrastive_loss_real = criterion_contrastive_loss(map_x_real, map_label_real)
|
|
kl_loss_real = -(1 + logvar_real - (mu_real - map_label_real).pow(2) - logvar_real.exp()) / 2
|
|
kl_loss_real = kl_loss_real.sum(dim=1).sum(dim=1).mean()
|
|
kl_loss_real = args.kl_lambda * kl_loss_real
|
|
|
|
mu_fake = mu[int(args.batchsize * args.ratio):, :, :]
|
|
logvar_fake = logvar[int(args.batchsize * args.ratio):, :, :]
|
|
map_x_fake = map_x[int(args.batchsize * args.ratio):, :, :]
|
|
map_label_fake = map_label[int(args.batchsize * args.ratio):, :, :]
|
|
|
|
absolute_loss_fake = 0.1 * criterion_absolute_loss(map_x_fake, map_label_fake)
|
|
contrastive_loss_fake = 0.1 * criterion_contrastive_loss(map_x_fake, map_label_fake)
|
|
kl_loss_fake = -(1 + logvar_fake - (mu_fake - map_label_fake).pow(2) - logvar_fake.exp()) / 2
|
|
kl_loss_fake = kl_loss_fake.sum(dim=1).sum(dim=1).mean()
|
|
kl_loss_fake = 0.1 * args.kl_lambda * kl_loss_fake
|
|
|
|
absolute_loss = absolute_loss_real + absolute_loss_fake
|
|
contrastive_loss = contrastive_loss_real + contrastive_loss_fake
|
|
kl_loss = kl_loss_real + kl_loss_fake
|
|
|
|
loss = absolute_loss + contrastive_loss + kl_loss
|
|
|
|
loss.backward()
|
|
|
|
optimizer.step()
|
|
|
|
n = inputs.size(0)
|
|
loss_absolute_real.update(absolute_loss_real.data, n)
|
|
loss_absolute_fake.update(absolute_loss_fake.data, n)
|
|
loss_contra_real.update(contrastive_loss_real.data, n)
|
|
loss_contra_fake.update(contrastive_loss_fake.data, n)
|
|
loss_kl_real.update(kl_loss_real.data, n)
|
|
loss_kl_fake.update(kl_loss_fake.data, n)
|
|
|
|
scheduler.step()
|
|
|
|
print(
|
|
'epoch:%d, Train: Absolute_loss: real=%.4f,fake=%.4f, '
|
|
'Contrastive_loss: real=%.4f,fake=%.4f, kl_loss: real=%.4f,fake=%.4f' % (
|
|
epoch + 1, loss_absolute_real.avg, loss_absolute_fake.avg, loss_contra_real.avg, loss_contra_fake.avg,
|
|
loss_kl_real.avg, loss_kl_fake.avg))
|
|
|
|
|
|
if epoch < 200:
|
|
epoch_test = 200
|
|
else:
|
|
epoch_test = 50
|
|
|
|
if epoch % epoch_test == epoch_test - 1:
|
|
model.eval()
|
|
|
|
with torch.no_grad():
|
|
|
|
''' val '''
|
|
|
|
|
|
val_data = Spoofing_valtest(val_list, val_image_dir, val_map_dir,
|
|
transform=transforms.Compose([Normaliztion_valtest(), ToTensor_valtest()]))
|
|
dataloader_val = DataLoader(val_data, batch_size=1, shuffle=False, num_workers=4)
|
|
|
|
map_score_list = []
|
|
|
|
for i, sample_batched in enumerate(dataloader_val):
|
|
|
|
inputs, spoof_label = sample_batched['image_x'].cuda(), sample_batched['spoofing_label'].cuda()
|
|
val_maps = sample_batched['val_map_x'].cuda()
|
|
|
|
optimizer.zero_grad()
|
|
|
|
mu, logvar, map_x, x_concat, x_Block1, x_Block2, x_Block3, x_input = model(inputs.squeeze(0))
|
|
score_norm = mu.sum(dim=1).sum(dim=1) / val_maps.squeeze(0).sum(dim=1).sum(dim=1)
|
|
map_score = score_norm.mean()
|
|
map_score_list.append('{} {}\n'.format(map_score, spoof_label[0][0]))
|
|
|
|
map_score_val_filename = args.log + '/' + args.log + '_map_score_val.txt'
|
|
with open(map_score_val_filename, 'w') as file:
|
|
file.writelines(map_score_list)
|
|
|
|
|
|
''' test '''
|
|
|
|
|
|
test_data = Spoofing_valtest(test_list, test_image_dir, test_map_dir,
|
|
transform=transforms.Compose([Normaliztion_valtest(), ToTensor_valtest()]))
|
|
dataloader_test = DataLoader(test_data, batch_size=1, shuffle=False, num_workers=4)
|
|
|
|
map_score_list = []
|
|
|
|
for i, sample_batched in enumerate(dataloader_test):
|
|
|
|
inputs, spoof_label = sample_batched['image_x'].cuda(), sample_batched['spoofing_label'].cuda()
|
|
test_maps = sample_batched['val_map_x'].cuda()
|
|
|
|
optimizer.zero_grad()
|
|
mu, logvar, map_x, x_concat, x_Block1, x_Block2, x_Block3, x_input = model(inputs.squeeze(0))
|
|
score_norm = mu.sum(dim=1).sum(dim=1) / test_maps.squeeze(0).sum(dim=1).sum(dim=1)
|
|
map_score = score_norm.mean()
|
|
map_score_list.append('{} {}\n'.format(map_score, spoof_label[0][0]))
|
|
|
|
map_score_test_filename = args.log + '/' + args.log + '_map_score_test.txt'
|
|
with open(map_score_test_filename, 'w') as file:
|
|
file.writelines(map_score_list)
|
|
|
|
|
|
|
|
|
|
val_threshold, test_threshold, val_ACC, val_ACER, test_ACC, test_APCER, test_BPCER, test_ACER, test_ACER_test_threshold = performances(
|
|
map_score_val_filename, map_score_test_filename)
|
|
|
|
print('epoch:%d, Val: val_threshold= %.4f, val_ACC= %.4f, val_ACER= %.4f' % (
|
|
epoch + 1, val_threshold, val_ACC, val_ACER))
|
|
log_file.write('\n epoch:%d, Val: val_threshold= %.4f, val_ACC= %.4f, val_ACER= %.4f \n' % (
|
|
epoch + 1, val_threshold, val_ACC, val_ACER))
|
|
|
|
print('epoch:%d, Test: ACC= %.4f, APCER= %.4f, BPCER= %.4f, ACER= %.4f' % (
|
|
epoch + 1, test_ACC, test_APCER, test_BPCER, test_ACER))
|
|
log_file.write('epoch:%d, Test: ACC= %.4f, APCER= %.4f, BPCER= %.4f, ACER= %.4f \n' % (
|
|
epoch + 1, test_ACC, test_APCER, test_BPCER, test_ACER))
|
|
log_file.flush()
|
|
|
|
if epoch % epoch_test == epoch_test - 1:
|
|
|
|
torch.save(model.state_dict(), args.log + '/' + args.log + '_%d.pkl' % (epoch + 1))
|
|
|
|
print('Finished Training')
|
|
log_file.close()
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser(description="save quality using landmarkpose model")
|
|
parser.add_argument('--gpus', type=str, default='0, 1, 2, 3', help='the gpu id used for predict')
|
|
parser.add_argument('--lr', type=float, default=0.0001, help='initial learning rate')
|
|
parser.add_argument('--batchsize', type=int, default=64, help='initial batchsize')
|
|
parser.add_argument('--step_size', type=int, default=500, help='how many epochs lr decays once')
|
|
parser.add_argument('--gamma', type=float, default=0.5, help='gamma of optim.lr_scheduler.StepLR, decay of lr')
|
|
parser.add_argument('--kl_lambda', type=float, default=0.001, help='')
|
|
parser.add_argument('--ratio', type=float, default=0.75, help='real and fake in batchsize ')
|
|
parser.add_argument('--echo_batches', type=int, default=50, help='how many batches display once')
|
|
parser.add_argument('--epochs', type=int, default=1600, help='total training epochs')
|
|
parser.add_argument('--log', type=str, default="CDCN_U_P1", help='log and save model name')
|
|
parser.add_argument('--finetune', action='store_true', default=False, help='whether finetune other models')
|
|
|
|
args = parser.parse_args()
|
|
train_test()
|
|
|