fasd / DSDG /DUM /utils.py
ozyman's picture
added dsdg without model file
e437acb
raw
history blame
13.1 kB
import os
import numpy as np
import torch
import shutil
import torchvision.transforms as transforms
from torch.autograd import Variable
import sklearn
from sklearn import metrics
from sklearn.metrics import roc_curve, auc
import pdb
class AvgrageMeter(object):
def __init__(self):
self.reset()
def reset(self):
self.avg = 0
self.sum = 0
self.cnt = 0
def update(self, val, n=1):
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
def accuracy(output, target, topk=(1,)):
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def get_threshold(score_file):
with open(score_file, 'r') as file:
lines = file.readlines()
data = []
count = 0.0
num_real = 0.0
num_fake = 0.0
for line in lines:
count += 1
tokens = line.split()
angle = float(tokens[0])
# pdb.set_trace()
type = int(tokens[1])
data.append({'map_score': angle, 'label': type})
if type == 1:
num_real += 1
else:
num_fake += 1
min_error = count # account ACER (or ACC)
min_threshold = 0.0
min_ACC = 0.0
min_ACER = 0.0
min_APCER = 0.0
min_BPCER = 0.0
for d in data:
threshold = d['map_score']
type1 = len([s for s in data if s['map_score'] <= threshold and s['label'] == 1])
type2 = len([s for s in data if s['map_score'] > threshold and s['label'] == 0])
ACC = 1 - (type1 + type2) / count
APCER = type2 / num_fake
BPCER = type1 / num_real
ACER = (APCER + BPCER) / 2.0
if ACER < min_error:
min_error = ACER
min_threshold = threshold
min_ACC = ACC
min_ACER = ACER
min_APCER = APCER
min_BPCER = min_BPCER
# print(min_error, min_threshold)
return min_threshold, min_ACC, min_APCER, min_BPCER, min_ACER
def test_threshold_based(threshold, score_file):
with open(score_file, 'r') as file:
lines = file.readlines()
data = []
count = 0.0
num_real = 0.0
num_fake = 0.0
for line in lines:
count += 1
tokens = line.split()
angle = float(tokens[0])
type = int(tokens[1])
data.append({'map_score': angle, 'label': type})
if type == 1:
num_real += 1
else:
num_fake += 1
type1 = len([s for s in data if s['map_score'] <= threshold and s['label'] == 1])
type2 = len([s for s in data if s['map_score'] > threshold and s['label'] == 0])
ACC = 1 - (type1 + type2) / count
APCER = type2 / num_fake
BPCER = type1 / num_real
ACER = (APCER + BPCER) / 2.0
return ACC, APCER, BPCER, ACER
def get_err_threhold(fpr, tpr, threshold):
RightIndex = (tpr + (1 - fpr) - 1)
right_index = np.argmax(RightIndex)
best_th = threshold[right_index]
err = fpr[right_index]
differ_tpr_fpr_1 = tpr + fpr - 1.0
right_index = np.argmin(np.abs(differ_tpr_fpr_1))
best_th = threshold[right_index]
err = fpr[right_index]
# print(err, best_th)
return err, best_th
# def performances(dev_scores, dev_labels, test_scores, test_labels):
def performances(map_score_val_filename, map_score_test_filename):
# val
with open(map_score_val_filename, 'r') as file:
lines = file.readlines()
val_scores = []
val_labels = []
data = []
count = 0.0
num_real = 0.0
num_fake = 0.0
for line in lines:
count += 1
tokens = line.split()
score = float(tokens[0])
label = float(tokens[1]) # label = int(tokens[1])
val_scores.append(score)
val_labels.append(label)
data.append({'map_score': score, 'label': label})
if label == 1:
num_real += 1
else:
num_fake += 1
fpr, tpr, threshold = roc_curve(val_labels, val_scores, pos_label=1)
val_err, val_threshold = get_err_threhold(fpr, tpr, threshold)
type1 = len([s for s in data if s['map_score'] <= val_threshold and s['label'] == 1])
type2 = len([s for s in data if s['map_score'] > val_threshold and s['label'] == 0])
val_ACC = 1 - (type1 + type2) / count
val_APCER = type2 / num_fake
val_BPCER = type1 / num_real
val_ACER = (val_APCER + val_BPCER) / 2.0
# test
with open(map_score_test_filename, 'r') as file2:
lines = file2.readlines()
test_scores = []
test_labels = []
data = []
count = 0.0
num_real = 0.0
num_fake = 0.0
for line in lines:
count += 1
tokens = line.split()
score = float(tokens[0])
label = float(tokens[1]) # label = int(tokens[1])
test_scores.append(score)
test_labels.append(label)
data.append({'map_score': score, 'label': label})
if label == 1:
num_real += 1
else:
num_fake += 1
# test based on val_threshold
type1 = len([s for s in data if s['map_score'] <= val_threshold and s['label'] == 1])
print([s for s in data if s['map_score'] <= val_threshold and s['label'] == 1])
type2 = len([s for s in data if s['map_score'] > val_threshold and s['label'] == 0])
print([s for s in data if s['map_score'] > val_threshold and s['label'] == 0])
test_ACC = 1 - (type1 + type2) / count
test_APCER = type2 / num_fake
test_BPCER = type1 / num_real
test_ACER = (test_APCER + test_BPCER) / 2.0
# test based on test_threshold
fpr_test, tpr_test, threshold_test = roc_curve(test_labels, test_scores, pos_label=1)
err_test, best_test_threshold = get_err_threhold(fpr_test, tpr_test, threshold_test)
type1 = len([s for s in data if s['map_score'] <= best_test_threshold and s['label'] == 1])
type2 = len([s for s in data if s['map_score'] > best_test_threshold and s['label'] == 0])
test_threshold_ACC = 1 - (type1 + type2) / count
test_threshold_APCER = type2 / num_fake
test_threshold_BPCER = type1 / num_real
test_threshold_ACER = (test_threshold_APCER + test_threshold_BPCER) / 2.0
return val_threshold, best_test_threshold, val_ACC, val_ACER, test_ACC, test_APCER, test_BPCER, test_ACER, test_threshold_ACER
def performances_SiW_EER(map_score_val_filename):
# val
with open(map_score_val_filename, 'r') as file:
lines = file.readlines()
val_scores = []
val_labels = []
data = []
count = 0.0
num_real = 0.0
num_fake = 0.0
for line in lines:
count += 1
tokens = line.split()
score = float(tokens[0])
label = int(tokens[1])
val_scores.append(score)
val_labels.append(label)
data.append({'map_score': score, 'label': label})
if label == 1:
num_real += 1
else:
num_fake += 1
fpr, tpr, threshold = roc_curve(val_labels, val_scores, pos_label=1)
val_err, val_threshold = get_err_threhold(fpr, tpr, threshold)
type1 = len([s for s in data if s['map_score'] <= val_threshold and s['label'] == 1])
type2 = len([s for s in data if s['map_score'] > val_threshold and s['label'] == 0])
val_ACC = 1 - (type1 + type2) / count
val_APCER = type2 / num_fake
val_BPCER = type1 / num_real
val_ACER = (val_APCER + val_BPCER) / 2.0
return val_threshold, val_ACC, val_APCER, val_BPCER, val_ACER
def performances_SiWM_EER(map_score_val_filename):
# val
with open(map_score_val_filename, 'r') as file:
lines = file.readlines()
val_scores = []
val_labels = []
data = []
count = 0.0
num_real = 0.0
num_fake = 0.0
for line in lines:
count += 1
tokens = line.split()
score = float(tokens[0])
label = int(tokens[1])
val_scores.append(score)
val_labels.append(label)
data.append({'map_score': score, 'label': label})
if label == 1:
num_real += 1
else:
num_fake += 1
fpr, tpr, threshold = roc_curve(val_labels, val_scores, pos_label=1)
val_err, val_threshold = get_err_threhold(fpr, tpr, threshold)
type1 = len([s for s in data if s['map_score'] <= val_threshold and s['label'] == 1])
type2 = len([s for s in data if s['map_score'] > val_threshold and s['label'] == 0])
val_ACC = 1 - (type1 + type2) / count
val_APCER = type2 / num_fake
val_BPCER = type1 / num_real
val_ACER = (val_APCER + val_BPCER) / 2.0
return val_threshold, val_err, val_ACC, val_APCER, val_BPCER, val_ACER
def get_err_threhold_CASIA_Replay(fpr, tpr, threshold):
RightIndex = (tpr + (1 - fpr) - 1)
right_index = np.argmax(RightIndex)
best_th = threshold[right_index]
err = fpr[right_index]
differ_tpr_fpr_1 = tpr + fpr - 1.0
right_index = np.argmin(np.abs(differ_tpr_fpr_1))
best_th = threshold[right_index]
err = fpr[right_index]
# print(err, best_th)
return err, best_th, right_index
def performances_CASIA_Replay(map_score_val_filename):
# val
with open(map_score_val_filename, 'r') as file:
lines = file.readlines()
val_scores = []
val_labels = []
data = []
count = 0.0
num_real = 0.0
num_fake = 0.0
for line in lines:
count += 1
tokens = line.split()
score = float(tokens[0])
label = float(tokens[1]) # int(tokens[1])
val_scores.append(score)
val_labels.append(label)
data.append({'map_score': score, 'label': label})
if label == 1:
num_real += 1
else:
num_fake += 1
fpr, tpr, threshold = roc_curve(val_labels, val_scores, pos_label=1)
val_err, val_threshold, right_index = get_err_threhold_CASIA_Replay(fpr, tpr, threshold)
type1 = len([s for s in data if s['map_score'] <= val_threshold and s['label'] == 1])
print([s for s in data if s['map_score'] <= val_threshold and s['label'] == 1])
type2 = len([s for s in data if s['map_score'] > val_threshold and s['label'] == 0])
print([s for s in data if s['map_score'] > val_threshold and s['label'] == 0])
val_ACC = 1 - (type1 + type2) / count
FRR = 1 - tpr # FRR = 1 - TPR
HTER = (fpr + FRR) / 2.0 # error recognition rate & reject recognition rate
return val_ACC, fpr[right_index], FRR[right_index], HTER[right_index], val_threshold
def performances_ZeroShot(map_score_val_filename):
# val
with open(map_score_val_filename, 'r') as file:
lines = file.readlines()
val_scores = []
val_labels = []
data = []
count = 0.0
num_real = 0.0
num_fake = 0.0
for line in lines:
count += 1
tokens = line.split()
score = float(tokens[0])
label = int(tokens[1])
val_scores.append(score)
val_labels.append(label)
data.append({'map_score': score, 'label': label})
if label == 1:
num_real += 1
else:
num_fake += 1
fpr, tpr, threshold = roc_curve(val_labels, val_scores, pos_label=1)
auc_val = metrics.auc(fpr, tpr)
val_err, val_threshold, right_index = get_err_threhold_CASIA_Replay(fpr, tpr, threshold)
type1 = len([s for s in data if s['map_score'] <= val_threshold and s['label'] == 1])
type2 = len([s for s in data if s['map_score'] > val_threshold and s['label'] == 0])
val_ACC = 1 - (type1 + type2) / count
FRR = 1 - tpr # FRR = 1 - TPR
HTER = (fpr + FRR) / 2.0 # error recognition rate & reject recognition rate
return val_ACC, auc_val, HTER[right_index]
def count_parameters_in_MB(model):
return np.sum(np.prod(v.size()) for name, v in model.named_parameters() if "auxiliary" not in name) / 1e6
def save_checkpoint(state, is_best, save):
filename = os.path.join(save, 'checkpoint.pth.tar')
torch.save(state, filename)
if is_best:
best_filename = os.path.join(save, 'model_best.pth.tar')
shutil.copyfile(filename, best_filename)
def save(model, model_path):
torch.save(model.state_dict(), model_path)
def load(model, model_path):
model.load_state_dict(torch.load(model_path))
def drop_path(x, drop_prob):
if drop_prob > 0.:
keep_prob = 1. - drop_prob
mask = Variable(torch.cuda.FloatTensor(x.size(0), 1, 1, 1, 1).bernoulli_(keep_prob))
x.div_(keep_prob)
x.mul_(mask)
return x
def create_exp_dir(path, scripts_to_save=None):
if not os.path.exists(path):
os.mkdir(path)
print('Experiment dir : {}'.format(path))
if scripts_to_save is not None:
os.mkdir(os.path.join(path, 'scripts'))
for script in scripts_to_save:
dst_file = os.path.join(path, 'scripts', os.path.basename(script))
shutil.copyfile(script, dst_file)