fasd / app.py
ozyman's picture
added parallel queue processing
bda5dad
raw
history blame
8.56 kB
import subprocess
subprocess.run(["sh", "tddfa/build.sh"])
import gradio as gr
from gradio.components import Dropdown
import cv2 as cv
import torch
from torchvision import transforms
from DeePixBiS.Model import DeePixBiS
import yaml
import numpy as np
import pandas as pd
from skimage.io import imread, imsave
# from tddfa.TDDFA import TDDFA
from tddfa.utils.depth import depth
from tddfa.TDDFA_ONNX import TDDFA_ONNX
import torch.optim as optim
from DSDG.DUM.models.CDCNs_u import Conv2d_cd, CDCN_u
import io
import uuid
import numpy as np
from PIL import Image
import boto3
import os
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
os.environ['OMP_NUM_THREADS'] = '4'
os.environ['AWS_ACCESS_KEY_ID'] = 'AKIA3JAMX4K53MFDKMGJ'
os.environ['AWS_SECRET_ACCESS_KEY'] = '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'
app_version = 'ddn1'
device = torch.device("cpu")
labels = ['Live', 'Spoof']
pix_threshhold = 0.45
dsdg_threshold = 0.0015
examples = [
['examples/1_1_21_2_33_scene_fake.jpg'],
['examples/frame150_real.jpg'],
['examples/1_2.avi_125_real.jpg'],
['examples/1_3.avi_25_fake.jpg']]
faceClassifier = cv.CascadeClassifier('./DeePixBiS/Classifiers/haarface.xml')
tfms = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((224, 224)),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
deepix_model = DeePixBiS(pretrained=False)
deepix_model.load_state_dict(torch.load('./DeePixBiS/DeePixBiS.pth'))
deepix_model.eval()
depth_config_path = 'tddfa/configs/mb1_120x120.yml' # 'tddfa/configs/mb1_120x120.yml
cfg = yaml.load(open(depth_config_path), Loader=yaml.SafeLoader)
tddfa = TDDFA_ONNX(gpu_mode=False, **cfg)
cdcn_model = CDCN_u(basic_conv=Conv2d_cd, theta=0.7)
cdcn_model = cdcn_model.to(device)
weights = torch.load('./DSDG/DUM/checkpoint/CDCN_U_P1_updated.pkl', map_location=device)
cdcn_model.load_state_dict(weights)
optimizer = optim.Adam(cdcn_model.parameters(), lr=0.001, weight_decay=0.00005)
cdcn_model.eval()
class Normaliztion_valtest(object):
"""
same as mxnet, normalize into [-1, 1]
image = (image - 127.5)/128
"""
def __call__(self, image_x):
image_x = (image_x - 127.5) / 128 # [-1,1]
return image_x
def prepare_data(images, boxes, depths):
transform = transforms.Compose([Normaliztion_valtest()])
files_total = 1
image_x = np.zeros((files_total, 256, 256, 3))
depth_x = np.ones((files_total, 32, 32))
for i, (image, bbox, depth_img) in enumerate(
zip(images, boxes, depths)):
x, y, w, h = bbox
depth_img = cv.cvtColor(depth_img, cv.COLOR_RGB2GRAY)
image = image[y:y + h, x:x + w]
depth_img = depth_img[y:y + h, x:x + w]
image_x[i, :, :, :] = cv.resize(image, (256, 256))
# transform to binary mask --> threshold = 0
depth_x[i, :, :] = cv.resize(depth_img, (32, 32))
image_x = image_x.transpose((0, 3, 1, 2))
image_x = transform(image_x)
image_x = torch.from_numpy(image_x.astype(float)).float()
depth_x = torch.from_numpy(depth_x.astype(float)).float()
return image_x, depth_x
def find_largest_face(faces):
largest_face = None
largest_area = 0
for (x, y, w, h) in faces:
area = w * h
if area > largest_area:
largest_area = area
largest_face = (x, y, w, h)
return largest_face
def inference(img):
if img is None:
return None, {}, None, None, {}, None, None
grey = cv.cvtColor(img, cv.COLOR_RGB2GRAY)
faces = faceClassifier.detectMultiScale(
grey, scaleFactor=1.1, minNeighbors=4)
face = find_largest_face(faces)
if face is not None:
x, y, w, h = face
x2 = x + w
y2 = y + h
faceRegion = img[y:y2, x:x2]
faceRegion = tfms(faceRegion)
faceRegion = faceRegion.unsqueeze(0)
# if model_name == 'DeePixBiS':
mask, binary = deepix_model.forward(faceRegion)
res_deepix = torch.mean(mask).item()
cls_deepix = 'Real' if res_deepix >= pix_threshhold else 'Spoof'
confidences_deepix = {'Real confidence': res_deepix}
color_deepix = (0, 255, 0) if cls_deepix == 'Real' else (255, 0, 0)
img_deepix = cv.rectangle(img.copy(), (x, y), (x2, y2), color_deepix, 2)
cv.putText(img_deepix, cls_deepix, (x, y2 + 30),
cv.FONT_HERSHEY_COMPLEX, 1, color_deepix)
# else:
dense_flag = True
box = [x, y, x2, y2, 1]
param_lst, roi_box_lst = tddfa(img, [box])
ver_lst = tddfa.recon_vers(param_lst, roi_box_lst, dense_flag=dense_flag)
depth_img = depth(img, ver_lst, tddfa.tri, with_bg_flag=True)
with torch.no_grad():
map_score_list = []
image_x, map_x = prepare_data([img], [list(face)], [depth_img])
# get the inputs
image_x = image_x.unsqueeze(0)
map_x = map_x.unsqueeze(0)
inputs = image_x.to(device)
test_maps = map_x.to(device)
optimizer.zero_grad()
map_score = 0.0
for frame_t in range(inputs.shape[1]):
mu, logvar, map_x, x_concat, x_Block1, x_Block2, x_Block3, x_input = cdcn_model(inputs[:, frame_t, :, :, :])
score_norm = torch.sum(mu) / torch.sum(test_maps[:, frame_t, :, :])
map_score += score_norm
map_score = map_score / inputs.shape[1]
map_score_list.append(map_score)
res_dsdg = map_score_list[0].item()
if res_dsdg > 10:
res_dsdg = 0.0
cls_dsdg = 'Real' if res_dsdg >= dsdg_threshold else 'Spoof'
res_dsdg = res_dsdg * 300
confidences_dsdg = {'Real confidence': res_dsdg}
color_dsdg = (0, 255, 0) if cls_dsdg == 'Real' else (255, 0, 0)
img_dsdg = cv.rectangle(img.copy(), (x, y), (x2, y2), color_dsdg, 2)
cv.putText(img_dsdg, cls_dsdg, (x, y2 + 30),
cv.FONT_HERSHEY_COMPLEX, 1, color_dsdg)
cls_deepix, cls_dsdg = [1 if cls_ == 'Real' else 0 for cls_ in [cls_deepix, cls_dsdg]]
return img_deepix, confidences_deepix, img_dsdg, confidences_dsdg, cls_deepix, cls_dsdg
else:
return img, {}, img, {}, None, None
def upload_to_s3(image_array, app_version, *labels):
folder = 'demo'
bucket_name = 'livenessng'
if image_array is None:
return 'Error. Take a photo first.'
elif labels[-2] == -1:
return 'Error. Run the detection first.'
elif labels[0] is None:
return 'Error. Select the true label first.'
# Initialize S3 client
s3 = boto3.client('s3')
# Encode labels and app version in image file name
encoded_labels = '_'.join([str(label) for label in labels])
random_string = str(uuid.uuid4()).split('-')[-1]
image_name = f"{folder}/{app_version}/{encoded_labels}_{random_string}.jpg"
# Save image as JPEG
image = Image.fromarray(np.uint8(image_array * 255))
image_bytes = io.BytesIO()
image.save(image_bytes, format='JPEG')
image_bytes.seek(0)
# Upload image to S3
res = s3.upload_fileobj(image_bytes, bucket_name, image_name)
# Return the S3 URL of the uploaded image
status = 'Successfully uploaded'
return status
# interface = .queue(concurrency_count=2)
demo = gr.Blocks()
with demo:
with gr.Row():
with gr.Column():
input_img = gr.Image(source='webcam', shape=None, type='numpy')
btn_run = gr.Button(value="Run")
with gr.Column():
outputs=[
gr.Image(label='DeePixBiS', type='numpy'),
gr.Label(num_top_classes=2, label='DeePixBiS'),
gr.Image(label='DSDG', type='numpy'),
gr.Label(num_top_classes=2, label='DSDG')]
with gr.Column():
radio = gr.Radio(
["Real", "Spoof", "None"], label="True label", type='index')
flag = gr.Button(value="Flag")
status = gr.Textbox()
example_block = gr.Examples(examples, [input_img], outputs+labels)
labels = [gr.Number(visible=False, value=-1), gr.Number(visible=False, value=-1)]
btn_run.click(inference, [input_img], outputs+labels)
app_version_block = gr.Textbox(value=app_version, visible=False)
flag.click(upload_to_s3, [input_img, app_version_block, radio]+labels, [status], show_progress=True)
if __name__ == '__main__':
demo.queue(concurrency_count=2)
demo.launch(share=False)