added logging
Browse files- app.py +62 -19
- requirements.txt +1 -0
app.py
CHANGED
@@ -20,20 +20,27 @@ from tddfa.TDDFA import TDDFA
|
|
20 |
import torch.optim as optim
|
21 |
from DSDG.DUM.models.CDCNs_u import Conv2d_cd, CDCN_u
|
22 |
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
import os
|
24 |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
25 |
os.environ['OMP_NUM_THREADS'] = '4'
|
26 |
|
|
|
27 |
|
28 |
device = torch.device("cpu")
|
29 |
labels = ['Live', 'Spoof']
|
30 |
pix_threshhold = 0.45
|
31 |
dsdg_threshold = 0.003
|
32 |
examples = [
|
33 |
-
['examples/1_1_21_2_33_scene_fake.jpg'
|
34 |
-
['examples/frame150_real.jpg'
|
35 |
-
['examples/1_2.avi_125_real.jpg'
|
36 |
-
['examples/1_3.avi_25_fake.jpg'
|
37 |
faceClassifier = cv.CascadeClassifier('./DeePixBiS/Classifiers/haarface.xml')
|
38 |
tfms = transforms.Compose([
|
39 |
transforms.ToPILImage(),
|
@@ -104,7 +111,7 @@ def find_largest_face(faces):
|
|
104 |
return largest_face
|
105 |
|
106 |
|
107 |
-
def inference(img
|
108 |
grey = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
109 |
faces = faceClassifier.detectMultiScale(
|
110 |
grey, scaleFactor=1.1, minNeighbors=4)
|
@@ -169,26 +176,62 @@ def inference(img, btn_res):
|
|
169 |
cv.putText(img_dsdg, label_dsdg, (x, y + h + 30),
|
170 |
cv.FONT_HERSHEY_COMPLEX, 1, color_dsdg)
|
171 |
|
172 |
-
|
|
|
|
|
173 |
else:
|
174 |
-
return img, {}, img, {}
|
175 |
-
|
176 |
-
def open_link():
|
177 |
-
import webbrowser
|
178 |
-
webbrowser.open("https://forms.gle/oEum7W2bQQZ8ctAr7")
|
179 |
|
180 |
-
# Create a button that opens a link when clicked
|
181 |
-
button = gr.Button(label="Open link", onclick=open_link)
|
182 |
|
|
|
|
|
|
|
183 |
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
188 |
outputs=[
|
189 |
gr.Image(label='DeePixBiS', type='numpy'),
|
190 |
gr.Label(num_top_classes=2, label='DeePixBiS'),
|
191 |
gr.Image(label='DSDG', type='numpy'),
|
192 |
-
gr.Label(num_top_classes=2, label='DSDG')]
|
193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
194 |
demo.launch(share=False)
|
|
|
20 |
import torch.optim as optim
|
21 |
from DSDG.DUM.models.CDCNs_u import Conv2d_cd, CDCN_u
|
22 |
|
23 |
+
import io
|
24 |
+
import uuid
|
25 |
+
import numpy as np
|
26 |
+
from PIL import Image
|
27 |
+
import boto3
|
28 |
+
|
29 |
import os
|
30 |
os.environ['KMP_DUPLICATE_LIB_OK'] = 'True'
|
31 |
os.environ['OMP_NUM_THREADS'] = '4'
|
32 |
|
33 |
+
app_version = 'ddn1'
|
34 |
|
35 |
device = torch.device("cpu")
|
36 |
labels = ['Live', 'Spoof']
|
37 |
pix_threshhold = 0.45
|
38 |
dsdg_threshold = 0.003
|
39 |
examples = [
|
40 |
+
['examples/1_1_21_2_33_scene_fake.jpg'],
|
41 |
+
['examples/frame150_real.jpg'],
|
42 |
+
['examples/1_2.avi_125_real.jpg'],
|
43 |
+
['examples/1_3.avi_25_fake.jpg']]
|
44 |
faceClassifier = cv.CascadeClassifier('./DeePixBiS/Classifiers/haarface.xml')
|
45 |
tfms = transforms.Compose([
|
46 |
transforms.ToPILImage(),
|
|
|
111 |
return largest_face
|
112 |
|
113 |
|
114 |
+
def inference(img):
|
115 |
grey = cv.cvtColor(img, cv.COLOR_BGR2GRAY)
|
116 |
faces = faceClassifier.detectMultiScale(
|
117 |
grey, scaleFactor=1.1, minNeighbors=4)
|
|
|
176 |
cv.putText(img_dsdg, label_dsdg, (x, y + h + 30),
|
177 |
cv.FONT_HERSHEY_COMPLEX, 1, color_dsdg)
|
178 |
|
179 |
+
cls_deepix, cls_dsdg = [1 if cls_ == 'Real' else 0 for cls_ in [cls_deepix, cls_dsdg]]
|
180 |
+
|
181 |
+
return img_deepix, confidences_deepix, img_dsdg, confidences_dsdg, cls_deepix, cls_dsdg
|
182 |
else:
|
183 |
+
return img, {}, img, {}, None, None
|
|
|
|
|
|
|
|
|
184 |
|
|
|
|
|
185 |
|
186 |
+
def upload_to_s3(image_array, app_version, *labels):
|
187 |
+
folder = 'demo'
|
188 |
+
bucket_name = 'livenessng'
|
189 |
|
190 |
+
# Initialize S3 client
|
191 |
+
s3 = boto3.client('s3')
|
192 |
+
|
193 |
+
# Encode labels and app version in image file name
|
194 |
+
encoded_labels = '_'.join([str(label) for label in labels])
|
195 |
+
random_string = str(uuid.uuid4()).split('-')[-1]
|
196 |
+
image_name = f"{folder}/{app_version}/{encoded_labels}_{random_string}.jpg"
|
197 |
+
|
198 |
+
# Save image as JPEG
|
199 |
+
image = Image.fromarray(np.uint8(image_array * 255))
|
200 |
+
image_bytes = io.BytesIO()
|
201 |
+
image.save(image_bytes, format='JPEG')
|
202 |
+
image_bytes.seek(0)
|
203 |
+
|
204 |
+
# Upload image to S3
|
205 |
+
res = s3.upload_fileobj(image_bytes, bucket_name, image_name)
|
206 |
+
# Return the S3 URL of the uploaded image
|
207 |
+
status = 'Successfully uploaded'
|
208 |
+
return status
|
209 |
+
|
210 |
+
|
211 |
+
# interface = .queue(concurrency_count=2)
|
212 |
+
demo = gr.Blocks()
|
213 |
+
|
214 |
+
with demo:
|
215 |
+
input_img = gr.Image(source='webcam', shape=None, type='numpy')
|
216 |
+
btn_run = gr.Button(value="Run")
|
217 |
+
with gr.Column():
|
218 |
outputs=[
|
219 |
gr.Image(label='DeePixBiS', type='numpy'),
|
220 |
gr.Label(num_top_classes=2, label='DeePixBiS'),
|
221 |
gr.Image(label='DSDG', type='numpy'),
|
222 |
+
gr.Label(num_top_classes=2, label='DSDG')]
|
223 |
+
labels = [gr.Number(visible=False), gr.Number(visible=False)]
|
224 |
+
btn_run.click(inference, [input_img], outputs+labels)
|
225 |
+
|
226 |
+
app_version_block = gr.Textbox(value=app_version, visible=False)
|
227 |
+
with gr.Column():
|
228 |
+
radio = gr.Radio(
|
229 |
+
["Real", "Spoof", "None"], label="True label", type='index'
|
230 |
+
)
|
231 |
+
flag = gr.Button(value="Flag")
|
232 |
+
status = gr.Textbox()
|
233 |
+
flag.click(upload_to_s3, [input_img, app_version_block, radio]+labels, [status], show_progress=True)
|
234 |
+
|
235 |
+
|
236 |
+
if __name__ == '__main__':
|
237 |
demo.launch(share=False)
|
requirements.txt
CHANGED
@@ -9,4 +9,5 @@ scipy
|
|
9 |
onnx
|
10 |
onnxruntime
|
11 |
cython
|
|
|
12 |
--index-url=https://download.pytorch.org/whl/cpu --extra-index-url=https://pypi.org/simple
|
|
|
9 |
onnx
|
10 |
onnxruntime
|
11 |
cython
|
12 |
+
boto3
|
13 |
--index-url=https://download.pytorch.org/whl/cpu --extra-index-url=https://pypi.org/simple
|