from __future__ import print_function, division import os import torch import pandas as pd import cv2 import numpy as np import random import torch from torch.utils.data import Dataset, DataLoader from torchvision import transforms import pdb import math import os import copy import imgaug.augmenters as iaa # face_scale = 1.3 #default for test, for training , can be set from [1.2 to 1.5] # data augment from 'imgaug' --> Add (value=(-40,40), per_channel=True), GammaContrast (gamma=(0.5,1.5)) seq = iaa.Sequential([ iaa.Add(value=(-40, 40), per_channel=True), # Add color iaa.GammaContrast(gamma=(0.5, 1.5)) # GammaContrast with a gamma of 0.5 to 1.5 ]) # array class RandomErasing(object): ''' Class that performs Random Erasing in Random Erasing Data Augmentation by Zhong et al. ------------------------------------------------------------------------------------- probability: The probability that the operation will be performed. sl: min erasing area sh: max erasing area r1: min aspect ratio mean: erasing value ------------------------------------------------------------------------------------- ''' def __init__(self, probability=0.5, sl=0.01, sh=0.05, r1=0.5, mean=[0.4914, 0.4822, 0.4465]): self.probability = probability self.mean = mean self.sl = sl self.sh = sh self.r1 = r1 def __call__(self, sample): img, map_x, spoofing_label = sample['image_x'], sample['map_x'], sample['spoofing_label'] if random.uniform(0, 1) < self.probability: attempts = np.random.randint(1, 3) for attempt in range(attempts): area = img.shape[0] * img.shape[1] target_area = random.uniform(self.sl, self.sh) * area aspect_ratio = random.uniform(self.r1, 1 / self.r1) h = int(round(math.sqrt(target_area * aspect_ratio))) w = int(round(math.sqrt(target_area / aspect_ratio))) if w < img.shape[1] and h < img.shape[0]: x1 = random.randint(0, img.shape[0] - h) y1 = random.randint(0, img.shape[1] - w) img[x1:x1 + h, y1:y1 + w, 0] = self.mean[0] img[x1:x1 + h, y1:y1 + w, 1] = self.mean[1] img[x1:x1 + h, y1:y1 + w, 2] = self.mean[2] return {'image_x': img, 'map_x': map_x, 'spoofing_label': spoofing_label} # Tensor class Cutout(object): def __init__(self, length=50): self.length = length def __call__(self, sample): img, map_x, spoofing_label = sample['image_x'], sample['map_x'], sample['spoofing_label'] h, w = img.shape[1], img.shape[2] # Tensor [1][2], nparray [0][1] mask = np.ones((h, w), np.float32) y = np.random.randint(h) x = np.random.randint(w) length_new = np.random.randint(1, self.length) y1 = np.clip(y - length_new // 2, 0, h) y2 = np.clip(y + length_new // 2, 0, h) x1 = np.clip(x - length_new // 2, 0, w) x2 = np.clip(x + length_new // 2, 0, w) mask[y1: y2, x1: x2] = 0. mask = torch.from_numpy(mask) mask = mask.expand_as(img) img *= mask return {'image_x': img, 'map_x': map_x, 'spoofing_label': spoofing_label} class Normaliztion(object): """ same as mxnet, normalize into [-1, 1] image = (image - 127.5)/128 """ def __call__(self, sample): image_x, map_x, spoofing_label = sample['image_x'], sample['map_x'], sample['spoofing_label'] new_image_x = (image_x - 127.5) / 128 # [-1,1] new_map_x = map_x / 255.0 # [0,1] return {'image_x': new_image_x, 'map_x': new_map_x, 'spoofing_label': spoofing_label} class RandomHorizontalFlip(object): """Horizontally flip the given Image randomly with a probability of 0.5.""" def __call__(self, sample): image_x, map_x, spoofing_label = sample['image_x'], sample['map_x'], sample['spoofing_label'] new_image_x = np.zeros((256, 256, 3)) new_map_x = np.zeros((32, 32)) p = random.random() if p < 0.5: # print('Flip') new_image_x = cv2.flip(image_x, 1) new_map_x = cv2.flip(map_x, 1) return {'image_x': new_image_x, 'map_x': new_map_x, 'spoofing_label': spoofing_label} else: # print('no Flip') return {'image_x': image_x, 'map_x': map_x, 'spoofing_label': spoofing_label} class ToTensor(object): """ Convert ndarrays in sample to Tensors. process only one batch every time """ def __call__(self, sample): image_x, map_x, spoofing_label = sample['image_x'], sample['map_x'], sample['spoofing_label'] # swap color axis because # numpy image: (batch_size) x H x W x C # torch image: (batch_size) x C X H X W image_x = image_x[:, :, ::-1].transpose((2, 0, 1)) image_x = np.array(image_x) map_x = np.array(map_x) spoofing_label_np = np.array([0], dtype=np.long) spoofing_label_np[0] = spoofing_label return {'image_x': torch.from_numpy(image_x.astype(np.float)).float(), 'map_x': torch.from_numpy(map_x.astype(np.float)).float(), 'spoofing_label': torch.from_numpy(spoofing_label_np.astype(np.long)).long()} class Spoofing_train_g(Dataset): def __init__(self, info_list, root_dir, map_dir, transform=None): # +1,1_1_21_1 self.landmarks_frame = pd.read_csv(info_list, delimiter=',', header=None) self.root_dir = root_dir self.map_dir = map_dir self.transform = transform def __len__(self): return len(self.landmarks_frame) def __getitem__(self, idx): # 1_1_30_1 videoname = str(self.landmarks_frame.iloc[idx, 1]) image_path = os.path.join(self.root_dir, videoname) map_path = os.path.join(self.map_dir, videoname) image_x, map_x = self.get_single_image_x(image_path, map_path, videoname) spoofing_label = self.landmarks_frame.iloc[idx, 0] if spoofing_label == 1: spoofing_label = 1 # real else: spoofing_label = 0 map_x = np.zeros((32, 32)) # fake sample = {'image_x': image_x, 'map_x': map_x, 'spoofing_label': spoofing_label} if self.transform: sample = self.transform(sample) return sample def get_idx(self): real_data_idx = [] fake_data_idx = [] i, j = 0, 0 for idx_all in range(self.__len__()): videoname = str(self.landmarks_frame.iloc[idx_all, 1]) if videoname[:1] == 'p': fake_data_idx.append(i) i += 1 else: real_data_idx.append(j) j += 1 return real_data_idx, fake_data_idx def get_single_image_x(self, images_path, maps_path, videoname): frame_total = len([name for name in os.listdir(images_path) if os.path.isfile(os.path.join(images_path, name))]) # random choose 1 frame image_id = np.random.randint(1, frame_total) if videoname[:1] == 'p': image_id = np.random.randint(1, 100) s = "%d_scene" % image_id image_name = s + '.jpg' # /home/shejiahui5/notespace/data/oulu_img/train_bbox_files/p2_0_1_30/21_scence.jpg s = "%d_depth1D" % image_id map_name = s + '.jpg' else: image_id = np.random.randint(1, frame_total) s = "_%d_scene" % image_id image_name = videoname + s + '.jpg' s = "_%d_depth1D" % image_id map_name = videoname + s + '.jpg' image_path = os.path.join(images_path, image_name) map_path = os.path.join(maps_path, map_name) map_x = np.zeros((32, 32)) # RGB image_x = cv2.imread(image_path) image_x = cv2.resize(image_x, (256, 256)) # data augment from 'imgaug' --> Add (value=(-40,40), per_channel=True), GammaContrast (gamma=(0.5,1.5)) image_x_aug = seq.augment_image(image_x) # gray-map if os.path.exists(map_path): map_x = cv2.imread(map_path, 0) map_x = cv2.resize(map_x, (32, 32)) return image_x_aug, map_x class SeparateBatchSampler(object): def __init__(self, real_data_idx, fake_data_idx, batch_size, ratio, put_back=False): self.batch_size = batch_size self.ratio = ratio self.real_data_num = len(real_data_idx) self.fake_data_num = len(fake_data_idx) self.max_num_image = max(self.real_data_num, self.fake_data_num) self.real_data_idx = real_data_idx self.fake_data_idx = fake_data_idx self.processed_idx = copy.deepcopy(self.real_data_idx) def __len__(self): return self.max_num_image // (int(self.batch_size * self.ratio)) def __iter__(self): batch_size_real_data = int(math.floor(self.ratio * self.batch_size)) batch_size_fake_data = self.batch_size - batch_size_real_data self.processed_idx = copy.deepcopy(self.real_data_idx) rand_real_data_idx = np.random.permutation(len(self.real_data_idx) // 2) for i in range(self.__len__()): batch = [] idx_fake_data = random.sample(self.fake_data_idx, batch_size_fake_data) for j in range(batch_size_real_data // 2): idx = rand_real_data_idx[(i * batch_size_real_data + j) % (self.real_data_num // 2)] batch.append(self.processed_idx[2 * idx]) batch.append(self.processed_idx[2 * idx + 1]) for idx in idx_fake_data: batch.append(idx + self.real_data_num) # batch.append(2 * idx + 1 + self.real_data_num) yield batch