#!/usr/bin/env python3 # coding: utf-8 import torch.nn as nn __all__ = ['ResNet', 'resnet22'] def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None): super(BasicBlock, self).__init__() self.conv1 = conv3x3(inplanes, planes, stride) self.bn1 = nn.BatchNorm2d(planes) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.bn2 = nn.BatchNorm2d(planes) self.downsample = downsample self.stride = stride def forward(self, x): residual = x out = self.conv1(x) out = self.bn1(out) out = self.relu(out) out = self.conv2(out) out = self.bn2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): """Another Strucutre used in caffe-resnet25""" def __init__(self, block, layers, num_classes=62, num_landmarks=136, input_channel=3, fc_flg=False): self.inplanes = 64 super(ResNet, self).__init__() self.conv1 = nn.Conv2d(input_channel, 32, kernel_size=5, stride=2, padding=2, bias=False) self.bn1 = nn.BatchNorm2d(32) # 32 is input channels number self.relu1 = nn.ReLU(inplace=True) self.conv2 = nn.Conv2d(32, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(64) self.relu2 = nn.ReLU(inplace=True) # self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 128, layers[0], stride=2) self.layer2 = self._make_layer(block, 256, layers[1], stride=2) self.layer3 = self._make_layer(block, 512, layers[2], stride=2) self.conv_param = nn.Conv2d(512, num_classes, 1) # self.conv_lm = nn.Conv2d(512, num_landmarks, 1) self.avgpool = nn.AdaptiveAvgPool2d(1) # self.fc = nn.Linear(512 * block.expansion, num_classes) self.fc_flg = fc_flg # parameter initialization for m in self.modules(): if isinstance(m, nn.Conv2d): # 1. # n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels # m.weight.data.normal_(0, math.sqrt(2. / n)) # 2. kaiming normal nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _make_layer(self, block, planes, blocks, stride=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(planes * block.expansion), ) layers = [] layers.append(block(self.inplanes, planes, stride, downsample)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append(block(self.inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.bn1(x) x = self.relu1(x) x = self.conv2(x) x = self.bn2(x) x = self.relu2(x) # x = self.maxpool(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) # if self.fc_flg: # x = self.avgpool(x) # x = x.view(x.size(0), -1) # x = self.fc(x) # else: xp = self.conv_param(x) xp = self.avgpool(xp) xp = xp.view(xp.size(0), -1) # xl = self.conv_lm(x) # xl = self.avgpool(xl) # xl = xl.view(xl.size(0), -1) return xp # , xl def resnet22(**kwargs): model = ResNet( BasicBlock, [3, 4, 3], num_landmarks=kwargs.get('num_landmarks', 136), input_channel=kwargs.get('input_channel', 3), fc_flg=False ) return model def main(): pass if __name__ == '__main__': main()