Spaces:
Runtime error
Runtime error
initial commit
Browse files- .gitignore +252 -0
- README.md +6 -3
- anime2sketch/LICENSE +21 -0
- anime2sketch/model.py +256 -0
- app.py +85 -0
- examples/1.jpg +0 -0
- examples/2.jpg +0 -0
- examples/3.jpg +0 -0
- examples/4.jpg +0 -0
- examples/5.jpg +0 -0
- examples/6.jpg +0 -0
- examples/7.jpg +0 -0
- examples/8.jpg +0 -0
- manga_line_extraction/LICENSE +21 -0
- manga_line_extraction/model.py +323 -0
- requirements.txt +5 -0
- setup.py +35 -0
- utils.py +22 -0
.gitignore
ADDED
@@ -0,0 +1,252 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Created by https://www.toptal.com/developers/gitignore/api/macos,windows,linux,python
|
2 |
+
# Edit at https://www.toptal.com/developers/gitignore?templates=macos,windows,linux,python
|
3 |
+
|
4 |
+
### Linux ###
|
5 |
+
*~
|
6 |
+
|
7 |
+
# temporary files which can be created if a process still has a handle open of a deleted file
|
8 |
+
.fuse_hidden*
|
9 |
+
|
10 |
+
# KDE directory preferences
|
11 |
+
.directory
|
12 |
+
|
13 |
+
# Linux trash folder which might appear on any partition or disk
|
14 |
+
.Trash-*
|
15 |
+
|
16 |
+
# .nfs files are created when an open file is removed but is still being accessed
|
17 |
+
.nfs*
|
18 |
+
|
19 |
+
### macOS ###
|
20 |
+
# General
|
21 |
+
.DS_Store
|
22 |
+
.AppleDouble
|
23 |
+
.LSOverride
|
24 |
+
|
25 |
+
# Icon must end with two \r
|
26 |
+
Icon
|
27 |
+
|
28 |
+
# Thumbnails
|
29 |
+
._*
|
30 |
+
|
31 |
+
# Files that might appear in the root of a volume
|
32 |
+
.DocumentRevisions-V100
|
33 |
+
.fseventsd
|
34 |
+
.Spotlight-V100
|
35 |
+
.TemporaryItems
|
36 |
+
.Trashes
|
37 |
+
.VolumeIcon.icns
|
38 |
+
.com.apple.timemachine.donotpresent
|
39 |
+
|
40 |
+
# Directories potentially created on remote AFP share
|
41 |
+
.AppleDB
|
42 |
+
.AppleDesktop
|
43 |
+
Network Trash Folder
|
44 |
+
Temporary Items
|
45 |
+
.apdisk
|
46 |
+
|
47 |
+
### macOS Patch ###
|
48 |
+
# iCloud generated files
|
49 |
+
*.icloud
|
50 |
+
|
51 |
+
### Python ###
|
52 |
+
# Byte-compiled / optimized / DLL files
|
53 |
+
__pycache__/
|
54 |
+
*.py[cod]
|
55 |
+
*$py.class
|
56 |
+
|
57 |
+
# C extensions
|
58 |
+
*.so
|
59 |
+
|
60 |
+
# Distribution / packaging
|
61 |
+
.Python
|
62 |
+
build/
|
63 |
+
develop-eggs/
|
64 |
+
dist/
|
65 |
+
downloads/
|
66 |
+
eggs/
|
67 |
+
.eggs/
|
68 |
+
lib/
|
69 |
+
lib64/
|
70 |
+
parts/
|
71 |
+
sdist/
|
72 |
+
var/
|
73 |
+
wheels/
|
74 |
+
share/python-wheels/
|
75 |
+
*.egg-info/
|
76 |
+
.installed.cfg
|
77 |
+
*.egg
|
78 |
+
MANIFEST
|
79 |
+
|
80 |
+
# PyInstaller
|
81 |
+
# Usually these files are written by a python script from a template
|
82 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
83 |
+
*.manifest
|
84 |
+
*.spec
|
85 |
+
|
86 |
+
# Installer logs
|
87 |
+
pip-log.txt
|
88 |
+
pip-delete-this-directory.txt
|
89 |
+
|
90 |
+
# Unit test / coverage reports
|
91 |
+
htmlcov/
|
92 |
+
.tox/
|
93 |
+
.nox/
|
94 |
+
.coverage
|
95 |
+
.coverage.*
|
96 |
+
.cache
|
97 |
+
nosetests.xml
|
98 |
+
coverage.xml
|
99 |
+
*.cover
|
100 |
+
*.py,cover
|
101 |
+
.hypothesis/
|
102 |
+
.pytest_cache/
|
103 |
+
cover/
|
104 |
+
|
105 |
+
# Translations
|
106 |
+
*.mo
|
107 |
+
*.pot
|
108 |
+
|
109 |
+
# Django stuff:
|
110 |
+
*.log
|
111 |
+
local_settings.py
|
112 |
+
db.sqlite3
|
113 |
+
db.sqlite3-journal
|
114 |
+
|
115 |
+
# Flask stuff:
|
116 |
+
instance/
|
117 |
+
.webassets-cache
|
118 |
+
|
119 |
+
# Scrapy stuff:
|
120 |
+
.scrapy
|
121 |
+
|
122 |
+
# Sphinx documentation
|
123 |
+
docs/_build/
|
124 |
+
|
125 |
+
# PyBuilder
|
126 |
+
.pybuilder/
|
127 |
+
target/
|
128 |
+
|
129 |
+
# Jupyter Notebook
|
130 |
+
.ipynb_checkpoints
|
131 |
+
|
132 |
+
# IPython
|
133 |
+
profile_default/
|
134 |
+
ipython_config.py
|
135 |
+
|
136 |
+
# pyenv
|
137 |
+
# For a library or package, you might want to ignore these files since the code is
|
138 |
+
# intended to run in multiple environments; otherwise, check them in:
|
139 |
+
# .python-version
|
140 |
+
|
141 |
+
# pipenv
|
142 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
143 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
144 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
145 |
+
# install all needed dependencies.
|
146 |
+
#Pipfile.lock
|
147 |
+
|
148 |
+
# poetry
|
149 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
150 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
151 |
+
# commonly ignored for libraries.
|
152 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
153 |
+
#poetry.lock
|
154 |
+
|
155 |
+
# pdm
|
156 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
157 |
+
#pdm.lock
|
158 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
159 |
+
# in version control.
|
160 |
+
# https://pdm.fming.dev/#use-with-ide
|
161 |
+
.pdm.toml
|
162 |
+
|
163 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
164 |
+
__pypackages__/
|
165 |
+
|
166 |
+
# Celery stuff
|
167 |
+
celerybeat-schedule
|
168 |
+
celerybeat.pid
|
169 |
+
|
170 |
+
# SageMath parsed files
|
171 |
+
*.sage.py
|
172 |
+
|
173 |
+
# Environments
|
174 |
+
.env
|
175 |
+
.venv
|
176 |
+
env/
|
177 |
+
venv/
|
178 |
+
ENV/
|
179 |
+
env.bak/
|
180 |
+
venv.bak/
|
181 |
+
|
182 |
+
# Spyder project settings
|
183 |
+
.spyderproject
|
184 |
+
.spyproject
|
185 |
+
|
186 |
+
# Rope project settings
|
187 |
+
.ropeproject
|
188 |
+
|
189 |
+
# mkdocs documentation
|
190 |
+
/site
|
191 |
+
|
192 |
+
# mypy
|
193 |
+
.mypy_cache/
|
194 |
+
.dmypy.json
|
195 |
+
dmypy.json
|
196 |
+
|
197 |
+
# Pyre type checker
|
198 |
+
.pyre/
|
199 |
+
|
200 |
+
# pytype static type analyzer
|
201 |
+
.pytype/
|
202 |
+
|
203 |
+
# Cython debug symbols
|
204 |
+
cython_debug/
|
205 |
+
|
206 |
+
# PyCharm
|
207 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
208 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
209 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
210 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
211 |
+
#.idea/
|
212 |
+
|
213 |
+
### Python Patch ###
|
214 |
+
# Poetry local configuration file - https://python-poetry.org/docs/configuration/#local-configuration
|
215 |
+
poetry.toml
|
216 |
+
|
217 |
+
# ruff
|
218 |
+
.ruff_cache/
|
219 |
+
|
220 |
+
# LSP config files
|
221 |
+
pyrightconfig.json
|
222 |
+
|
223 |
+
### Windows ###
|
224 |
+
# Windows thumbnail cache files
|
225 |
+
Thumbs.db
|
226 |
+
Thumbs.db:encryptable
|
227 |
+
ehthumbs.db
|
228 |
+
ehthumbs_vista.db
|
229 |
+
|
230 |
+
# Dump file
|
231 |
+
*.stackdump
|
232 |
+
|
233 |
+
# Folder config file
|
234 |
+
[Dd]esktop.ini
|
235 |
+
|
236 |
+
# Recycle Bin used on file shares
|
237 |
+
$RECYCLE.BIN/
|
238 |
+
|
239 |
+
# Windows Installer files
|
240 |
+
*.cab
|
241 |
+
*.msi
|
242 |
+
*.msix
|
243 |
+
*.msm
|
244 |
+
*.msp
|
245 |
+
|
246 |
+
# Windows shortcuts
|
247 |
+
*.lnk
|
248 |
+
|
249 |
+
# End of https://www.toptal.com/developers/gitignore/api/macos,windows,linux,python
|
250 |
+
|
251 |
+
*.pth
|
252 |
+
gradio_cached_examples
|
README.md
CHANGED
@@ -1,6 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
emoji:
|
4 |
colorFrom: green
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
@@ -10,4 +10,7 @@ pinned: false
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
1 |
---
|
2 |
+
title: Anime to Sketch
|
3 |
+
emoji: 💭
|
4 |
colorFrom: green
|
5 |
colorTo: yellow
|
6 |
sdk: gradio
|
|
|
10 |
license: mit
|
11 |
---
|
12 |
|
13 |
+
Original repo:
|
14 |
+
- MangaLineExtraction: https://github.com/ljsabc/MangaLineExtraction_PyTorch
|
15 |
+
- Anime2Sketch: https://github.com/Mukosame/Anime2Sketch
|
16 |
+
|
anime2sketch/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2021 Xiaoyu Xiang
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
anime2sketch/model.py
ADDED
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from PIL import Image
|
3 |
+
import torchvision.transforms as transforms
|
4 |
+
|
5 |
+
try:
|
6 |
+
from torchvision.transforms import InterpolationMode
|
7 |
+
|
8 |
+
bic = InterpolationMode.BICUBIC
|
9 |
+
except ImportError:
|
10 |
+
bic = Image.BICUBIC
|
11 |
+
|
12 |
+
import numpy as np
|
13 |
+
import torch
|
14 |
+
import torch.nn as nn
|
15 |
+
import functools
|
16 |
+
|
17 |
+
IMG_EXTENSIONS = [".jpg", ".jpeg", ".png", ".ppm", ".bmp", ".webp"]
|
18 |
+
|
19 |
+
|
20 |
+
class UnetGenerator(nn.Module):
|
21 |
+
"""Create a Unet-based generator"""
|
22 |
+
|
23 |
+
def __init__(
|
24 |
+
self,
|
25 |
+
input_nc,
|
26 |
+
output_nc,
|
27 |
+
num_downs,
|
28 |
+
ngf=64,
|
29 |
+
norm_layer=nn.BatchNorm2d,
|
30 |
+
use_dropout=False,
|
31 |
+
):
|
32 |
+
"""Construct a Unet generator
|
33 |
+
Parameters:
|
34 |
+
input_nc (int) -- the number of channels in input images
|
35 |
+
output_nc (int) -- the number of channels in output images
|
36 |
+
num_downs (int) -- the number of downsamplings in UNet. For example, # if |num_downs| == 7,
|
37 |
+
image of size 128x128 will become of size 1x1 # at the bottleneck
|
38 |
+
ngf (int) -- the number of filters in the last conv layer
|
39 |
+
norm_layer -- normalization layer
|
40 |
+
We construct the U-Net from the innermost layer to the outermost layer.
|
41 |
+
It is a recursive process.
|
42 |
+
"""
|
43 |
+
super(UnetGenerator, self).__init__()
|
44 |
+
# construct unet structure
|
45 |
+
unet_block = UnetSkipConnectionBlock(
|
46 |
+
ngf * 8,
|
47 |
+
ngf * 8,
|
48 |
+
input_nc=None,
|
49 |
+
submodule=None,
|
50 |
+
norm_layer=norm_layer,
|
51 |
+
innermost=True,
|
52 |
+
) # add the innermost layer
|
53 |
+
for _ in range(num_downs - 5): # add intermediate layers with ngf * 8 filters
|
54 |
+
unet_block = UnetSkipConnectionBlock(
|
55 |
+
ngf * 8,
|
56 |
+
ngf * 8,
|
57 |
+
input_nc=None,
|
58 |
+
submodule=unet_block,
|
59 |
+
norm_layer=norm_layer,
|
60 |
+
use_dropout=use_dropout,
|
61 |
+
)
|
62 |
+
# gradually reduce the number of filters from ngf * 8 to ngf
|
63 |
+
unet_block = UnetSkipConnectionBlock(
|
64 |
+
ngf * 4, ngf * 8, input_nc=None, submodule=unet_block, norm_layer=norm_layer
|
65 |
+
)
|
66 |
+
unet_block = UnetSkipConnectionBlock(
|
67 |
+
ngf * 2, ngf * 4, input_nc=None, submodule=unet_block, norm_layer=norm_layer
|
68 |
+
)
|
69 |
+
unet_block = UnetSkipConnectionBlock(
|
70 |
+
ngf, ngf * 2, input_nc=None, submodule=unet_block, norm_layer=norm_layer
|
71 |
+
)
|
72 |
+
self.model = UnetSkipConnectionBlock(
|
73 |
+
output_nc,
|
74 |
+
ngf,
|
75 |
+
input_nc=input_nc,
|
76 |
+
submodule=unet_block,
|
77 |
+
outermost=True,
|
78 |
+
norm_layer=norm_layer,
|
79 |
+
) # add the outermost layer
|
80 |
+
|
81 |
+
def forward(self, input):
|
82 |
+
"""Standard forward"""
|
83 |
+
return self.model(input)
|
84 |
+
|
85 |
+
|
86 |
+
class UnetSkipConnectionBlock(nn.Module):
|
87 |
+
"""Defines the Unet submodule with skip connection.
|
88 |
+
X -------------------identity----------------------
|
89 |
+
|-- downsampling -- |submodule| -- upsampling --|
|
90 |
+
"""
|
91 |
+
|
92 |
+
def __init__(
|
93 |
+
self,
|
94 |
+
outer_nc,
|
95 |
+
inner_nc,
|
96 |
+
input_nc=None,
|
97 |
+
submodule=None,
|
98 |
+
outermost=False,
|
99 |
+
innermost=False,
|
100 |
+
norm_layer=nn.BatchNorm2d,
|
101 |
+
use_dropout=False,
|
102 |
+
):
|
103 |
+
"""Construct a Unet submodule with skip connections.
|
104 |
+
Parameters:
|
105 |
+
outer_nc (int) -- the number of filters in the outer conv layer
|
106 |
+
inner_nc (int) -- the number of filters in the inner conv layer
|
107 |
+
input_nc (int) -- the number of channels in input images/features
|
108 |
+
submodule (UnetSkipConnectionBlock) -- previously defined submodules
|
109 |
+
outermost (bool) -- if this module is the outermost module
|
110 |
+
innermost (bool) -- if this module is the innermost module
|
111 |
+
norm_layer -- normalization layer
|
112 |
+
use_dropout (bool) -- if use dropout layers.
|
113 |
+
"""
|
114 |
+
super(UnetSkipConnectionBlock, self).__init__()
|
115 |
+
self.outermost = outermost
|
116 |
+
if type(norm_layer) == functools.partial:
|
117 |
+
use_bias = norm_layer.func == nn.InstanceNorm2d
|
118 |
+
else:
|
119 |
+
use_bias = norm_layer == nn.InstanceNorm2d
|
120 |
+
if input_nc is None:
|
121 |
+
input_nc = outer_nc
|
122 |
+
downconv = nn.Conv2d(
|
123 |
+
input_nc, inner_nc, kernel_size=4, stride=2, padding=1, bias=use_bias
|
124 |
+
)
|
125 |
+
downrelu = nn.LeakyReLU(0.2, True)
|
126 |
+
downnorm = norm_layer(inner_nc)
|
127 |
+
uprelu = nn.ReLU(True)
|
128 |
+
upnorm = norm_layer(outer_nc)
|
129 |
+
|
130 |
+
if outermost:
|
131 |
+
upconv = nn.ConvTranspose2d(
|
132 |
+
inner_nc * 2, outer_nc, kernel_size=4, stride=2, padding=1
|
133 |
+
)
|
134 |
+
down = [downconv]
|
135 |
+
up = [uprelu, upconv, nn.Tanh()]
|
136 |
+
model = down + [submodule] + up
|
137 |
+
elif innermost:
|
138 |
+
upconv = nn.ConvTranspose2d(
|
139 |
+
inner_nc, outer_nc, kernel_size=4, stride=2, padding=1, bias=use_bias
|
140 |
+
)
|
141 |
+
down = [downrelu, downconv]
|
142 |
+
up = [uprelu, upconv, upnorm]
|
143 |
+
model = down + up
|
144 |
+
else:
|
145 |
+
upconv = nn.ConvTranspose2d(
|
146 |
+
inner_nc * 2,
|
147 |
+
outer_nc,
|
148 |
+
kernel_size=4,
|
149 |
+
stride=2,
|
150 |
+
padding=1,
|
151 |
+
bias=use_bias,
|
152 |
+
)
|
153 |
+
down = [downrelu, downconv, downnorm]
|
154 |
+
up = [uprelu, upconv, upnorm]
|
155 |
+
|
156 |
+
if use_dropout:
|
157 |
+
model = down + [submodule] + up + [nn.Dropout(0.5)]
|
158 |
+
else:
|
159 |
+
model = down + [submodule] + up
|
160 |
+
|
161 |
+
self.model = nn.Sequential(*model)
|
162 |
+
|
163 |
+
def forward(self, x):
|
164 |
+
if self.outermost:
|
165 |
+
return self.model(x)
|
166 |
+
else: # add skip connections
|
167 |
+
return torch.cat([x, self.model(x)], 1)
|
168 |
+
|
169 |
+
|
170 |
+
class Anime2Sketch:
|
171 |
+
def __init__(
|
172 |
+
self, model_path: str = "./models/netG.pth", device: str = "cpu"
|
173 |
+
) -> None:
|
174 |
+
norm_layer = functools.partial(
|
175 |
+
nn.InstanceNorm2d, affine=False, track_running_stats=False
|
176 |
+
)
|
177 |
+
net = UnetGenerator(3, 1, 8, 64, norm_layer=norm_layer, use_dropout=False)
|
178 |
+
ckpt = torch.load(model_path)
|
179 |
+
|
180 |
+
for key in list(ckpt.keys()):
|
181 |
+
if "module." in key:
|
182 |
+
ckpt[key.replace("module.", "")] = ckpt[key]
|
183 |
+
del ckpt[key]
|
184 |
+
|
185 |
+
net.load_state_dict(ckpt)
|
186 |
+
|
187 |
+
self.model = net
|
188 |
+
|
189 |
+
if torch.cuda.is_available() and device == "cuda":
|
190 |
+
self.device = "cuda"
|
191 |
+
self.model.to(device)
|
192 |
+
else:
|
193 |
+
self.device = "cpu"
|
194 |
+
self.model.to("cpu")
|
195 |
+
|
196 |
+
def predict(self, image: Image.Image, load_size: int = 512) -> Image:
|
197 |
+
try:
|
198 |
+
aus_resize = None
|
199 |
+
if load_size > 0:
|
200 |
+
aus_resize = image.size
|
201 |
+
transform = self.get_transform(load_size=load_size)
|
202 |
+
image = transform(image)
|
203 |
+
img = image.unsqueeze(0)
|
204 |
+
except:
|
205 |
+
raise Exception("Error in reading image {}".format(image.filename))
|
206 |
+
|
207 |
+
aus_tensor = self.model(img.to(self.device))
|
208 |
+
aus_img = self.tensor_to_img(aus_tensor)
|
209 |
+
|
210 |
+
image_pil = Image.fromarray(aus_img)
|
211 |
+
if aus_resize:
|
212 |
+
bic = Image.BICUBIC
|
213 |
+
image_pil = image_pil.resize(aus_resize, bic)
|
214 |
+
|
215 |
+
return image_pil
|
216 |
+
|
217 |
+
def get_transform(self, load_size=0, grayscale=False, method=bic, convert=True):
|
218 |
+
transform_list = []
|
219 |
+
if grayscale:
|
220 |
+
transform_list.append(transforms.Grayscale(1))
|
221 |
+
if load_size > 0:
|
222 |
+
osize = [load_size, load_size]
|
223 |
+
transform_list.append(transforms.Resize(osize, method))
|
224 |
+
if convert:
|
225 |
+
transform_list += [transforms.ToTensor()]
|
226 |
+
if grayscale:
|
227 |
+
transform_list += [transforms.Normalize((0.5,), (0.5,))]
|
228 |
+
else:
|
229 |
+
transform_list += [
|
230 |
+
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
|
231 |
+
]
|
232 |
+
return transforms.Compose(transform_list)
|
233 |
+
|
234 |
+
def tensor_to_img(self, input_image, imtype=np.uint8):
|
235 |
+
""" "Converts a Tensor array into a numpy image array.
|
236 |
+
Parameters:
|
237 |
+
input_image (tensor) -- the input image tensor array
|
238 |
+
imtype (type) -- the desired type of the converted numpy array
|
239 |
+
"""
|
240 |
+
|
241 |
+
if not isinstance(input_image, np.ndarray):
|
242 |
+
if isinstance(input_image, torch.Tensor): # get the data from a variable
|
243 |
+
image_tensor = input_image.data
|
244 |
+
else:
|
245 |
+
return input_image
|
246 |
+
image_numpy = (
|
247 |
+
image_tensor[0].cpu().float().numpy()
|
248 |
+
) # convert it into a numpy array
|
249 |
+
if image_numpy.shape[0] == 1: # grayscale to RGB
|
250 |
+
image_numpy = np.tile(image_numpy, (3, 1, 1))
|
251 |
+
image_numpy = (
|
252 |
+
(np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0
|
253 |
+
) # post-processing: tranpose and scaling
|
254 |
+
else: # if it is a numpy array, do nothing
|
255 |
+
image_numpy = input_image
|
256 |
+
return image_numpy.astype(imtype)
|
app.py
ADDED
@@ -0,0 +1,85 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from setup import setup
|
3 |
+
import cv2
|
4 |
+
from PIL import Image
|
5 |
+
from manga_line_extraction.model import MangaLineExtractor
|
6 |
+
from anime2sketch.model import Anime2Sketch
|
7 |
+
|
8 |
+
setup()
|
9 |
+
|
10 |
+
print("Setup finished")
|
11 |
+
|
12 |
+
extractor = MangaLineExtractor("./models/erika.pth", "cpu")
|
13 |
+
to_sketch = Anime2Sketch("./models/netG.pth", "cpu")
|
14 |
+
|
15 |
+
print("Model loaded")
|
16 |
+
|
17 |
+
|
18 |
+
def extract(image):
|
19 |
+
return extractor.predict(image)
|
20 |
+
|
21 |
+
|
22 |
+
def convert_to_sketch(image):
|
23 |
+
return to_sketch.predict(image)
|
24 |
+
|
25 |
+
|
26 |
+
def start(image):
|
27 |
+
return [extract(image), convert_to_sketch(Image.fromarray(image).convert("RGB"))]
|
28 |
+
|
29 |
+
|
30 |
+
def ui():
|
31 |
+
with gr.Blocks() as blocks:
|
32 |
+
gr.Markdown(
|
33 |
+
"""
|
34 |
+
# Anime to Sketch
|
35 |
+
Unofficial demo for converting illustrations into sketches.
|
36 |
+
Original repos:
|
37 |
+
- [MangaLineExtraction_PyTorch](https://github.com/ljsabc/MangaLineExtraction_PyTorch)
|
38 |
+
- [Anime2Sketch](https://github.com/Mukosame/Anime2Sketch)
|
39 |
+
"""
|
40 |
+
)
|
41 |
+
|
42 |
+
with gr.Row():
|
43 |
+
with gr.Column():
|
44 |
+
input_img = gr.Image(label="Input", interactive=True)
|
45 |
+
|
46 |
+
extract_btn = gr.Button("Extract", variant="primary")
|
47 |
+
|
48 |
+
with gr.Column():
|
49 |
+
# with gr.Row():
|
50 |
+
extract_output_img = gr.Image(
|
51 |
+
label="MangaLineExtraction", interactive=False
|
52 |
+
)
|
53 |
+
to_sketch_output_img = gr.Image(label="Anime2Sketch", interactive=False)
|
54 |
+
|
55 |
+
gr.Examples(
|
56 |
+
fn=start,
|
57 |
+
examples=[
|
58 |
+
["./examples/1.jpg"],
|
59 |
+
["./examples/2.jpg"],
|
60 |
+
["./examples/3.jpg"],
|
61 |
+
["./examples/4.jpg"],
|
62 |
+
["./examples/5.jpg"],
|
63 |
+
["./examples/6.jpg"],
|
64 |
+
["./examples/7.jpg"],
|
65 |
+
["./examples/8.jpg"],
|
66 |
+
],
|
67 |
+
inputs=[input_img],
|
68 |
+
outputs=[extract_output_img, to_sketch_output_img],
|
69 |
+
label="Examples",
|
70 |
+
cache_examples=True,
|
71 |
+
)
|
72 |
+
|
73 |
+
gr.Markdown("Images are from nijijourney.")
|
74 |
+
|
75 |
+
extract_btn.click(
|
76 |
+
fn=start,
|
77 |
+
inputs=[input_img],
|
78 |
+
outputs=[extract_output_img, to_sketch_output_img],
|
79 |
+
)
|
80 |
+
|
81 |
+
return blocks
|
82 |
+
|
83 |
+
|
84 |
+
if __name__ == "__main__":
|
85 |
+
ui().launch()
|
examples/1.jpg
ADDED
examples/2.jpg
ADDED
examples/3.jpg
ADDED
examples/4.jpg
ADDED
examples/5.jpg
ADDED
examples/6.jpg
ADDED
examples/7.jpg
ADDED
examples/8.jpg
ADDED
manga_line_extraction/LICENSE
ADDED
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
MIT License
|
2 |
+
|
3 |
+
Copyright (c) 2021 Miaomiao Li
|
4 |
+
|
5 |
+
Permission is hereby granted, free of charge, to any person obtaining a copy
|
6 |
+
of this software and associated documentation files (the "Software"), to deal
|
7 |
+
in the Software without restriction, including without limitation the rights
|
8 |
+
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
9 |
+
copies of the Software, and to permit persons to whom the Software is
|
10 |
+
furnished to do so, subject to the following conditions:
|
11 |
+
|
12 |
+
The above copyright notice and this permission notice shall be included in all
|
13 |
+
copies or substantial portions of the Software.
|
14 |
+
|
15 |
+
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
16 |
+
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
17 |
+
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
18 |
+
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
19 |
+
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
20 |
+
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
21 |
+
SOFTWARE.
|
manga_line_extraction/model.py
ADDED
@@ -0,0 +1,323 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
from torch.utils.data.dataset import Dataset
|
5 |
+
from PIL import Image
|
6 |
+
import fnmatch
|
7 |
+
import cv2
|
8 |
+
|
9 |
+
import sys
|
10 |
+
|
11 |
+
import numpy as np
|
12 |
+
|
13 |
+
# torch.set_printoptions(precision=10)
|
14 |
+
|
15 |
+
|
16 |
+
class _bn_relu_conv(nn.Module):
|
17 |
+
def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
|
18 |
+
super(_bn_relu_conv, self).__init__()
|
19 |
+
self.model = nn.Sequential(
|
20 |
+
nn.BatchNorm2d(in_filters, eps=1e-3),
|
21 |
+
nn.LeakyReLU(0.2),
|
22 |
+
nn.Conv2d(
|
23 |
+
in_filters,
|
24 |
+
nb_filters,
|
25 |
+
(fw, fh),
|
26 |
+
stride=subsample,
|
27 |
+
padding=(fw // 2, fh // 2),
|
28 |
+
padding_mode="zeros",
|
29 |
+
),
|
30 |
+
)
|
31 |
+
|
32 |
+
def forward(self, x):
|
33 |
+
return self.model(x)
|
34 |
+
|
35 |
+
# the following are for debugs
|
36 |
+
print(
|
37 |
+
"****",
|
38 |
+
np.max(x.cpu().numpy()),
|
39 |
+
np.min(x.cpu().numpy()),
|
40 |
+
np.mean(x.cpu().numpy()),
|
41 |
+
np.std(x.cpu().numpy()),
|
42 |
+
x.shape,
|
43 |
+
)
|
44 |
+
for i, layer in enumerate(self.model):
|
45 |
+
if i != 2:
|
46 |
+
x = layer(x)
|
47 |
+
else:
|
48 |
+
x = layer(x)
|
49 |
+
# x = nn.functional.pad(x, (1, 1, 1, 1), mode='constant', value=0)
|
50 |
+
print(
|
51 |
+
"____",
|
52 |
+
np.max(x.cpu().numpy()),
|
53 |
+
np.min(x.cpu().numpy()),
|
54 |
+
np.mean(x.cpu().numpy()),
|
55 |
+
np.std(x.cpu().numpy()),
|
56 |
+
x.shape,
|
57 |
+
)
|
58 |
+
print(x[0])
|
59 |
+
return x
|
60 |
+
|
61 |
+
|
62 |
+
class _u_bn_relu_conv(nn.Module):
|
63 |
+
def __init__(self, in_filters, nb_filters, fw, fh, subsample=1):
|
64 |
+
super(_u_bn_relu_conv, self).__init__()
|
65 |
+
self.model = nn.Sequential(
|
66 |
+
nn.BatchNorm2d(in_filters, eps=1e-3),
|
67 |
+
nn.LeakyReLU(0.2),
|
68 |
+
nn.Conv2d(
|
69 |
+
in_filters,
|
70 |
+
nb_filters,
|
71 |
+
(fw, fh),
|
72 |
+
stride=subsample,
|
73 |
+
padding=(fw // 2, fh // 2),
|
74 |
+
),
|
75 |
+
nn.Upsample(scale_factor=2, mode="nearest"),
|
76 |
+
)
|
77 |
+
|
78 |
+
def forward(self, x):
|
79 |
+
return self.model(x)
|
80 |
+
|
81 |
+
|
82 |
+
class _shortcut(nn.Module):
|
83 |
+
def __init__(self, in_filters, nb_filters, subsample=1):
|
84 |
+
super(_shortcut, self).__init__()
|
85 |
+
self.process = False
|
86 |
+
self.model = None
|
87 |
+
if in_filters != nb_filters or subsample != 1:
|
88 |
+
self.process = True
|
89 |
+
self.model = nn.Sequential(
|
90 |
+
nn.Conv2d(in_filters, nb_filters, (1, 1), stride=subsample)
|
91 |
+
)
|
92 |
+
|
93 |
+
def forward(self, x, y):
|
94 |
+
# print(x.size(), y.size(), self.process)
|
95 |
+
if self.process:
|
96 |
+
y0 = self.model(x)
|
97 |
+
# print("merge+", torch.max(y0+y), torch.min(y0+y),torch.mean(y0+y), torch.std(y0+y), y0.shape)
|
98 |
+
return y0 + y
|
99 |
+
else:
|
100 |
+
# print("merge", torch.max(x+y), torch.min(x+y),torch.mean(x+y), torch.std(x+y), y.shape)
|
101 |
+
return x + y
|
102 |
+
|
103 |
+
|
104 |
+
class _u_shortcut(nn.Module):
|
105 |
+
def __init__(self, in_filters, nb_filters, subsample):
|
106 |
+
super(_u_shortcut, self).__init__()
|
107 |
+
self.process = False
|
108 |
+
self.model = None
|
109 |
+
if in_filters != nb_filters:
|
110 |
+
self.process = True
|
111 |
+
self.model = nn.Sequential(
|
112 |
+
nn.Conv2d(
|
113 |
+
in_filters,
|
114 |
+
nb_filters,
|
115 |
+
(1, 1),
|
116 |
+
stride=subsample,
|
117 |
+
padding_mode="zeros",
|
118 |
+
),
|
119 |
+
nn.Upsample(scale_factor=2, mode="nearest"),
|
120 |
+
)
|
121 |
+
|
122 |
+
def forward(self, x, y):
|
123 |
+
if self.process:
|
124 |
+
return self.model(x) + y
|
125 |
+
else:
|
126 |
+
return x + y
|
127 |
+
|
128 |
+
|
129 |
+
class basic_block(nn.Module):
|
130 |
+
def __init__(self, in_filters, nb_filters, init_subsample=1):
|
131 |
+
super(basic_block, self).__init__()
|
132 |
+
self.conv1 = _bn_relu_conv(
|
133 |
+
in_filters, nb_filters, 3, 3, subsample=init_subsample
|
134 |
+
)
|
135 |
+
self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
|
136 |
+
self.shortcut = _shortcut(in_filters, nb_filters, subsample=init_subsample)
|
137 |
+
|
138 |
+
def forward(self, x):
|
139 |
+
x1 = self.conv1(x)
|
140 |
+
x2 = self.residual(x1)
|
141 |
+
return self.shortcut(x, x2)
|
142 |
+
|
143 |
+
|
144 |
+
class _u_basic_block(nn.Module):
|
145 |
+
def __init__(self, in_filters, nb_filters, init_subsample=1):
|
146 |
+
super(_u_basic_block, self).__init__()
|
147 |
+
self.conv1 = _u_bn_relu_conv(
|
148 |
+
in_filters, nb_filters, 3, 3, subsample=init_subsample
|
149 |
+
)
|
150 |
+
self.residual = _bn_relu_conv(nb_filters, nb_filters, 3, 3)
|
151 |
+
self.shortcut = _u_shortcut(in_filters, nb_filters, subsample=init_subsample)
|
152 |
+
|
153 |
+
def forward(self, x):
|
154 |
+
y = self.residual(self.conv1(x))
|
155 |
+
return self.shortcut(x, y)
|
156 |
+
|
157 |
+
|
158 |
+
class _residual_block(nn.Module):
|
159 |
+
def __init__(self, in_filters, nb_filters, repetitions, is_first_layer=False):
|
160 |
+
super(_residual_block, self).__init__()
|
161 |
+
layers = []
|
162 |
+
for i in range(repetitions):
|
163 |
+
init_subsample = 1
|
164 |
+
if i == repetitions - 1 and not is_first_layer:
|
165 |
+
init_subsample = 2
|
166 |
+
if i == 0:
|
167 |
+
l = basic_block(
|
168 |
+
in_filters=in_filters,
|
169 |
+
nb_filters=nb_filters,
|
170 |
+
init_subsample=init_subsample,
|
171 |
+
)
|
172 |
+
else:
|
173 |
+
l = basic_block(
|
174 |
+
in_filters=nb_filters,
|
175 |
+
nb_filters=nb_filters,
|
176 |
+
init_subsample=init_subsample,
|
177 |
+
)
|
178 |
+
layers.append(l)
|
179 |
+
|
180 |
+
self.model = nn.Sequential(*layers)
|
181 |
+
|
182 |
+
def forward(self, x):
|
183 |
+
return self.model(x)
|
184 |
+
|
185 |
+
|
186 |
+
class _upsampling_residual_block(nn.Module):
|
187 |
+
def __init__(self, in_filters, nb_filters, repetitions):
|
188 |
+
super(_upsampling_residual_block, self).__init__()
|
189 |
+
layers = []
|
190 |
+
for i in range(repetitions):
|
191 |
+
l = None
|
192 |
+
if i == 0:
|
193 |
+
l = _u_basic_block(
|
194 |
+
in_filters=in_filters, nb_filters=nb_filters
|
195 |
+
) # (input)
|
196 |
+
else:
|
197 |
+
l = basic_block(in_filters=nb_filters, nb_filters=nb_filters) # (input)
|
198 |
+
layers.append(l)
|
199 |
+
|
200 |
+
self.model = nn.Sequential(*layers)
|
201 |
+
|
202 |
+
def forward(self, x):
|
203 |
+
return self.model(x)
|
204 |
+
|
205 |
+
|
206 |
+
class res_skip(nn.Module):
|
207 |
+
def __init__(self):
|
208 |
+
super(res_skip, self).__init__()
|
209 |
+
self.block0 = _residual_block(
|
210 |
+
in_filters=1, nb_filters=24, repetitions=2, is_first_layer=True
|
211 |
+
) # (input)
|
212 |
+
self.block1 = _residual_block(
|
213 |
+
in_filters=24, nb_filters=48, repetitions=3
|
214 |
+
) # (block0)
|
215 |
+
self.block2 = _residual_block(
|
216 |
+
in_filters=48, nb_filters=96, repetitions=5
|
217 |
+
) # (block1)
|
218 |
+
self.block3 = _residual_block(
|
219 |
+
in_filters=96, nb_filters=192, repetitions=7
|
220 |
+
) # (block2)
|
221 |
+
self.block4 = _residual_block(
|
222 |
+
in_filters=192, nb_filters=384, repetitions=12
|
223 |
+
) # (block3)
|
224 |
+
|
225 |
+
self.block5 = _upsampling_residual_block(
|
226 |
+
in_filters=384, nb_filters=192, repetitions=7
|
227 |
+
) # (block4)
|
228 |
+
self.res1 = _shortcut(
|
229 |
+
in_filters=192, nb_filters=192
|
230 |
+
) # (block3, block5, subsample=(1,1))
|
231 |
+
|
232 |
+
self.block6 = _upsampling_residual_block(
|
233 |
+
in_filters=192, nb_filters=96, repetitions=5
|
234 |
+
) # (res1)
|
235 |
+
self.res2 = _shortcut(
|
236 |
+
in_filters=96, nb_filters=96
|
237 |
+
) # (block2, block6, subsample=(1,1))
|
238 |
+
|
239 |
+
self.block7 = _upsampling_residual_block(
|
240 |
+
in_filters=96, nb_filters=48, repetitions=3
|
241 |
+
) # (res2)
|
242 |
+
self.res3 = _shortcut(
|
243 |
+
in_filters=48, nb_filters=48
|
244 |
+
) # (block1, block7, subsample=(1,1))
|
245 |
+
|
246 |
+
self.block8 = _upsampling_residual_block(
|
247 |
+
in_filters=48, nb_filters=24, repetitions=2
|
248 |
+
) # (res3)
|
249 |
+
self.res4 = _shortcut(
|
250 |
+
in_filters=24, nb_filters=24
|
251 |
+
) # (block0,block8, subsample=(1,1))
|
252 |
+
|
253 |
+
self.block9 = _residual_block(
|
254 |
+
in_filters=24, nb_filters=16, repetitions=2, is_first_layer=True
|
255 |
+
) # (res4)
|
256 |
+
self.conv15 = _bn_relu_conv(
|
257 |
+
in_filters=16, nb_filters=1, fh=1, fw=1, subsample=1
|
258 |
+
) # (block7)
|
259 |
+
|
260 |
+
def forward(self, x):
|
261 |
+
x0 = self.block0(x)
|
262 |
+
x1 = self.block1(x0)
|
263 |
+
x2 = self.block2(x1)
|
264 |
+
x3 = self.block3(x2)
|
265 |
+
x4 = self.block4(x3)
|
266 |
+
|
267 |
+
x5 = self.block5(x4)
|
268 |
+
res1 = self.res1(x3, x5)
|
269 |
+
|
270 |
+
x6 = self.block6(res1)
|
271 |
+
res2 = self.res2(x2, x6)
|
272 |
+
|
273 |
+
x7 = self.block7(res2)
|
274 |
+
res3 = self.res3(x1, x7)
|
275 |
+
|
276 |
+
x8 = self.block8(res3)
|
277 |
+
res4 = self.res4(x0, x8)
|
278 |
+
|
279 |
+
x9 = self.block9(res4)
|
280 |
+
y = self.conv15(x9)
|
281 |
+
|
282 |
+
return y
|
283 |
+
|
284 |
+
|
285 |
+
class MangaLineExtractor:
|
286 |
+
def __init__(self, model_path: str = "erika.pth", device: str = "cpu"):
|
287 |
+
self.model = res_skip()
|
288 |
+
self.model.load_state_dict(torch.load(model_path))
|
289 |
+
|
290 |
+
self.is_cuda = torch.cuda.is_available() and device == "cuda"
|
291 |
+
if self.is_cuda:
|
292 |
+
self.model.cuda()
|
293 |
+
else:
|
294 |
+
self.model.cpu()
|
295 |
+
|
296 |
+
self.model.eval()
|
297 |
+
|
298 |
+
def predict(self, image):
|
299 |
+
src = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
|
300 |
+
|
301 |
+
rows = int(np.ceil(src.shape[0] / 16)) * 16
|
302 |
+
cols = int(np.ceil(src.shape[1] / 16)) * 16
|
303 |
+
|
304 |
+
# manually construct a batch. You can change it based on your usecases.
|
305 |
+
patch = np.ones((1, 1, rows, cols), dtype=np.float32)
|
306 |
+
patch[0, 0, 0 : src.shape[0], 0 : src.shape[1]] = src
|
307 |
+
|
308 |
+
if self.is_cuda:
|
309 |
+
tensor = torch.from_numpy(patch).cuda()
|
310 |
+
else:
|
311 |
+
tensor = torch.from_numpy(patch).cpu()
|
312 |
+
|
313 |
+
y = self.model(tensor)
|
314 |
+
|
315 |
+
yc = y.detach().numpy()[0, 0, :, :]
|
316 |
+
yc[yc > 255] = 255
|
317 |
+
yc[yc < 0] = 0
|
318 |
+
yc = yc / 255.0
|
319 |
+
|
320 |
+
output = yc[0 : src.shape[0], 0 : src.shape[1]]
|
321 |
+
output = cv2.cvtColor(output, cv2.COLOR_GRAY2BGR)
|
322 |
+
|
323 |
+
return output
|
requirements.txt
ADDED
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
torch
|
2 |
+
torchvision
|
3 |
+
numpy
|
4 |
+
opencv-python
|
5 |
+
huggingface_hub
|
setup.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests
|
2 |
+
import os
|
3 |
+
from huggingface_hub import hf_hub_download
|
4 |
+
from utils import custom_drive_cache_dir, get_drive
|
5 |
+
|
6 |
+
HF_TOKEN = os.getenv("HF_TOKEN")
|
7 |
+
|
8 |
+
MANGA_LINE_EXTRACTION_MODEL = "https://github.com/ljsabc/MangaLineExtraction_PyTorch/releases/download/v1/erika.pth"
|
9 |
+
ANIME2SKETCH_MODEL = {"REPO_ID": "p1atdev/Anime2Sketch", "FILENAME": "netG.pth"}
|
10 |
+
|
11 |
+
|
12 |
+
def download_manga_line_extraction_model():
|
13 |
+
if os.path.exists("./models/erika.pth"):
|
14 |
+
return
|
15 |
+
|
16 |
+
|
17 |
+
def download_anime2sketch_model():
|
18 |
+
if os.path.exists("./models/netG.pth"):
|
19 |
+
return
|
20 |
+
|
21 |
+
drive = get_drive("./models/netG.pth")
|
22 |
+
with custom_drive_cache_dir(drive) as cache_dir:
|
23 |
+
hf_hub_download(
|
24 |
+
repo_id=ANIME2SKETCH_MODEL["REPO_ID"],
|
25 |
+
filename=ANIME2SKETCH_MODEL["FILENAME"],
|
26 |
+
local_dir="./models",
|
27 |
+
use_auth_token=HF_TOKEN,
|
28 |
+
local_dir_use_symlinks=False,
|
29 |
+
cache_dir=cache_dir,
|
30 |
+
)
|
31 |
+
|
32 |
+
|
33 |
+
def setup():
|
34 |
+
download_manga_line_extraction_model()
|
35 |
+
download_anime2sketch_model()
|
utils.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pathlib import Path
|
2 |
+
import tempfile
|
3 |
+
from contextlib import contextmanager
|
4 |
+
import os
|
5 |
+
|
6 |
+
|
7 |
+
def get_drive(path: str):
|
8 |
+
path = Path(path).resolve()
|
9 |
+
drive = path.drive
|
10 |
+
root = path.root
|
11 |
+
return drive + root
|
12 |
+
|
13 |
+
|
14 |
+
@contextmanager
|
15 |
+
def custom_drive_cache_dir(drive: str):
|
16 |
+
drive = Path(drive)
|
17 |
+
base_dir = Path(drive) / "tmp"
|
18 |
+
if not base_dir.exists():
|
19 |
+
os.makedirs(base_dir)
|
20 |
+
print(f"Using {base_dir.resolve()} as cache dir")
|
21 |
+
with tempfile.TemporaryDirectory(dir=base_dir) as tmp_dir:
|
22 |
+
yield tmp_dir
|