Plat commited on
Commit
6ea233e
Β·
1 Parent(s): ff84eba

fix: settings

Browse files
Files changed (2) hide show
  1. README.md +2 -2
  2. app.py +41 -21
README.md CHANGED
@@ -1,6 +1,6 @@
1
  ---
2
- title: Random Illustrious Xl
3
- emoji: πŸ–Ό
4
  colorFrom: purple
5
  colorTo: red
6
  sdk: gradio
 
1
  ---
2
+ title: Random Illustrious XL
3
+ emoji: πŸŽ¨πŸ–ŒοΈ
4
  colorFrom: purple
5
  colorTo: red
6
  sdk: gradio
app.py CHANGED
@@ -36,13 +36,12 @@ IMAGE_MODEL_REPO_ID = os.environ.get(
36
  DART_V3_REPO_ID = os.environ.get("DART_V3_REPO_ID", None)
37
  assert DART_V3_REPO_ID is not None
38
 
39
- torch_dtype = torch.bfloat16
40
-
41
  dart = AutoModelForCausalLM.from_pretrained(
42
  DART_V3_REPO_ID,
43
- torch_dtype=torch_dtype,
44
  token=HF_TOKEN,
45
  use_cache=True,
 
46
  )
47
  dart = dart.eval()
48
  dart = dart.requires_grad_(False)
@@ -50,14 +49,15 @@ dart = torch.compile(dart)
50
  tokenizer = AutoTokenizer.from_pretrained(DART_V3_REPO_ID)
51
 
52
  pipe = StableDiffusionXLPipeline.from_pretrained(
53
- IMAGE_MODEL_REPO_ID,
54
- torch_dtype=torch_dtype,
55
  add_watermarker=False,
56
- custom_pipeline="lpw_stable_diffusion_xl"
57
  )
58
  pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
59
  pipe.unet.set_attn_processor(AttnProcessor2_0())
60
- pipe = pipe.to(device)
 
61
 
62
 
63
  MAX_SEED = np.iinfo(np.int32).max
@@ -70,32 +70,35 @@ TEMPLATE = (
70
  "{aspect_ratio}"
71
  "<|length:medium|>"
72
  #
73
- "<copyright>original</copyright>"
74
  #
75
  "<character></character>"
76
  #
77
- "<general>"
78
  )
 
 
 
79
 
80
  def get_aspect_ratio(width: int, height: int) -> str:
81
  ar = width / height
82
 
83
  if ar <= 1 / math.sqrt(3):
84
- return "<|aspect_ratio:ultra_wide|>"
85
- elif ar <= 8 / 9: #
86
- return "<|aspect_ratio:wide|>"
87
  elif ar < 9 / 8:
88
  return "<|aspect_ratio:square|>"
89
  elif ar < math.sqrt(3):
90
- return "<|aspect_ratio:tall|>"
91
  else:
92
- return "<|aspect_ratio:ultra_tall|>"
93
 
94
 
95
  @torch.inference_mode
96
- def generate_prompt(aspect_ratio: str):
97
  input_ids = tokenizer.encode_plus(
98
- TEMPLATE.format(aspect_ratio=aspect_ratio),
99
  return_tensors="pt",
100
  ).input_ids
101
  print("input_ids:", input_ids)
@@ -111,14 +114,22 @@ def generate_prompt(aspect_ratio: str):
111
  )[0]
112
 
113
  generated = output_ids[len(input_ids) :]
114
- decoded = ", ".join([token for token in tokenizer.batch_decode(generated, skip_special_tokens=True) if token.strip() != ""])
 
 
 
 
 
 
115
  print("decoded:", decoded)
116
 
117
  return decoded
118
 
 
119
  def format_prompt(prompt: str, prompt_suffix: str):
120
  return f"{prompt}, {prompt_suffix}"
121
 
 
122
  @spaces.GPU
123
  def generate_image(
124
  prompt: str,
@@ -141,7 +152,9 @@ def generate_image(
141
 
142
  return image
143
 
 
144
  def on_generate(
 
145
  suffix: str,
146
  negative_prompt: str,
147
  seed,
@@ -157,7 +170,8 @@ def on_generate(
157
  generator = torch.Generator().manual_seed(seed)
158
 
159
  ar = get_aspect_ratio(width, height)
160
- prompt = generate_prompt(ar)
 
161
  prompt = format_prompt(prompt, suffix)
162
  print(prompt)
163
 
@@ -188,6 +202,11 @@ with gr.Blocks(css=css) as demo:
188
  """)
189
 
190
  with gr.Row():
 
 
 
 
 
191
  run_button = gr.Button("Generate random", scale=0)
192
 
193
  result = gr.Image(label="Result", show_label=False)
@@ -199,13 +218,13 @@ with gr.Blocks(css=css) as demo:
199
  prompt_suffix = gr.Text(
200
  label="Prompt suffix",
201
  visible=True,
202
- value="masterpiece, best quality, very aesthetic",
203
  )
204
  negative_prompt = gr.Text(
205
  label="Negative prompt",
206
  placeholder="Enter a negative prompt",
207
  visible=True,
208
- value="(worst quality, bad quality, low quality:1.2), lowres, displeasing, very displeasing, bad anatomy, bad hands, extra digits, fewer digits, scan artifacts, signature, username, jpeg artifacts, retro, 2010s",
209
  )
210
 
211
  seed = gr.Slider(
@@ -241,7 +260,7 @@ with gr.Blocks(css=css) as demo:
241
  minimum=1.0,
242
  maximum=10.0,
243
  step=0.5,
244
- value=7,
245
  )
246
 
247
  num_inference_steps = gr.Slider(
@@ -256,6 +275,7 @@ with gr.Blocks(css=css) as demo:
256
  triggers=[run_button.click],
257
  fn=on_generate,
258
  inputs=[
 
259
  prompt_suffix,
260
  negative_prompt,
261
  seed,
 
36
  DART_V3_REPO_ID = os.environ.get("DART_V3_REPO_ID", None)
37
  assert DART_V3_REPO_ID is not None
38
 
 
 
39
  dart = AutoModelForCausalLM.from_pretrained(
40
  DART_V3_REPO_ID,
41
+ torch_dtype=torch.bfloat16,
42
  token=HF_TOKEN,
43
  use_cache=True,
44
+ device_map="cpu",
45
  )
46
  dart = dart.eval()
47
  dart = dart.requires_grad_(False)
 
49
  tokenizer = AutoTokenizer.from_pretrained(DART_V3_REPO_ID)
50
 
51
  pipe = StableDiffusionXLPipeline.from_pretrained(
52
+ IMAGE_MODEL_REPO_ID,
53
+ torch_dtype=torch.bfloat16,
54
  add_watermarker=False,
55
+ custom_pipeline="lpw_stable_diffusion_xl",
56
  )
57
  pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config)
58
  pipe.unet.set_attn_processor(AttnProcessor2_0())
59
+ if device == "cuda":
60
+ pipe.enable_sequential_cpu_offload(gpu_id=0, device="cuda")
61
 
62
 
63
  MAX_SEED = np.iinfo(np.int32).max
 
70
  "{aspect_ratio}"
71
  "<|length:medium|>"
72
  #
73
+ "<copyright></copyright>"
74
  #
75
  "<character></character>"
76
  #
77
+ "<general>{subject}"
78
  )
79
+ QUALITY_TAGS = "masterpiece, best quality, very aesthetic, newest"
80
+ NEGATIVE_PROMPT = "nsfw, (worst quality, bad quality:1.2), very displeasing, lowres, jaggy lines, 3d, watermark, signature, copyright, logo, blurry, ugly, poorly drawn, retro, scan, white outline"
81
+
82
 
83
  def get_aspect_ratio(width: int, height: int) -> str:
84
  ar = width / height
85
 
86
  if ar <= 1 / math.sqrt(3):
87
+ return "<|aspect_ratio:ultra_tall|>"
88
+ elif ar <= 8 / 9:
89
+ return "<|aspect_ratio:tall|>"
90
  elif ar < 9 / 8:
91
  return "<|aspect_ratio:square|>"
92
  elif ar < math.sqrt(3):
93
+ return "<|aspect_ratio:wide|>"
94
  else:
95
+ return "<|aspect_ratio:ultra_wide|>"
96
 
97
 
98
  @torch.inference_mode
99
+ def generate_prompt(subject: str, aspect_ratio: str):
100
  input_ids = tokenizer.encode_plus(
101
+ TEMPLATE.format(aspect_ratio=aspect_ratio, subject=subject),
102
  return_tensors="pt",
103
  ).input_ids
104
  print("input_ids:", input_ids)
 
114
  )[0]
115
 
116
  generated = output_ids[len(input_ids) :]
117
+ decoded = ", ".join(
118
+ [
119
+ token
120
+ for token in tokenizer.batch_decode(generated, skip_special_tokens=True)
121
+ if token.strip() != ""
122
+ ]
123
+ )
124
  print("decoded:", decoded)
125
 
126
  return decoded
127
 
128
+
129
  def format_prompt(prompt: str, prompt_suffix: str):
130
  return f"{prompt}, {prompt_suffix}"
131
 
132
+
133
  @spaces.GPU
134
  def generate_image(
135
  prompt: str,
 
152
 
153
  return image
154
 
155
+
156
  def on_generate(
157
+ subject: str,
158
  suffix: str,
159
  negative_prompt: str,
160
  seed,
 
170
  generator = torch.Generator().manual_seed(seed)
171
 
172
  ar = get_aspect_ratio(width, height)
173
+ print("ar:", ar)
174
+ prompt = generate_prompt(subject, ar)
175
  prompt = format_prompt(prompt, suffix)
176
  print(prompt)
177
 
 
202
  """)
203
 
204
  with gr.Row():
205
+ subject_radio = gr.Dropdown(
206
+ label="Subject",
207
+ choices=["1girl", "2girls", "1boy", "no humans"],
208
+ value="1girl",
209
+ )
210
  run_button = gr.Button("Generate random", scale=0)
211
 
212
  result = gr.Image(label="Result", show_label=False)
 
218
  prompt_suffix = gr.Text(
219
  label="Prompt suffix",
220
  visible=True,
221
+ value=QUALITY_TAGS,
222
  )
223
  negative_prompt = gr.Text(
224
  label="Negative prompt",
225
  placeholder="Enter a negative prompt",
226
  visible=True,
227
+ value=NEGATIVE_PROMPT,
228
  )
229
 
230
  seed = gr.Slider(
 
260
  minimum=1.0,
261
  maximum=10.0,
262
  step=0.5,
263
+ value=6.5,
264
  )
265
 
266
  num_inference_steps = gr.Slider(
 
275
  triggers=[run_button.click],
276
  fn=on_generate,
277
  inputs=[
278
+ subject_radio,
279
  prompt_suffix,
280
  negative_prompt,
281
  seed,