init
Browse files- app.py +107 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,107 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import gradio as gr
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
|
6 |
+
description = """
|
7 |
+
Minimizing L under the constraint FLOPs(N, D) = C.
|
8 |
+
|
9 |
+
The functions $N_{opt}(C)$, and $D_{opt}(C)$ describe the optimal allocation of a computational budget $C$.
|
10 |
+
|
11 |
+
We use the following notation:
|
12 |
+
|
13 |
+
β’ L β the cross entropy loss in nats. Typically it will be averaged over the tokens in a context, but in
|
14 |
+
some cases we report the loss for specific tokens within the context.
|
15 |
+
|
16 |
+
β’ N β the number of model parameters, excluding all vocabulary and positional embeddings
|
17 |
+
|
18 |
+
β’ D β the dataset size in tokens
|
19 |
+
|
20 |
+
β’ C β 6ND β an estimate of the total non-embedding training compute
|
21 |
+
|
22 |
+
$$E=1.69, A=406.4, \\alpha=0.34, \\beta=0.28$$
|
23 |
+
$$C\\approx6DN$$
|
24 |
+
$$L(N,D)=E+\\frac{A}{N^\\alpha}+\\frac{B}{D^\\beta}$$
|
25 |
+
$$N_{opt}(C),D_{opt}(C)={\\arg\\min}_{N,D\ s.t.\ FLOP/s(N,D)=C}\ L(N,D)$$
|
26 |
+
|
27 |
+
"""
|
28 |
+
|
29 |
+
article = """
|
30 |
+
References
|
31 |
+
- [Training Compute-Optimal Large Language Models](https://arxiv.org/pdf/2203.15556.pdf)
|
32 |
+
- [Scaling Laws for Neural Language Models](https://arxiv.org/pdf/2001.08361.pdf)
|
33 |
+
- [karpathy/nanoGPT](https://github.com/karpathy/nanoGPT/blob/master/scaling_laws.ipynb)
|
34 |
+
"""
|
35 |
+
|
36 |
+
|
37 |
+
def L(N, D):
|
38 |
+
"""
|
39 |
+
Approximates loss given N parameters and D dataset size (in tokens),
|
40 |
+
per Chinchilla paper.
|
41 |
+
"""
|
42 |
+
E = 1.69 # entropy of natural language, limit of infinite model on infinite data
|
43 |
+
A = 406.4
|
44 |
+
B = 410.7
|
45 |
+
alpha = 0.34
|
46 |
+
beta = 0.28
|
47 |
+
return A / (N ** alpha) + B / (D ** beta) + E
|
48 |
+
|
49 |
+
|
50 |
+
def plot_pens(tflpos_card, utilization, num_gps, training_days):
|
51 |
+
fig = plt.figure()
|
52 |
+
tflpos_card = float(tflpos_card)*(10**12)
|
53 |
+
utilization = float(utilization)
|
54 |
+
num_gps = int(num_gps)
|
55 |
+
training_days = float(training_days)
|
56 |
+
|
57 |
+
# target compute budget (usually know this because we know how many GPU for how long go brrr)
|
58 |
+
c = tflpos_card*num_gps*86400*training_days*utilization
|
59 |
+
|
60 |
+
# (I got this flop number from row 1 of Table A3)
|
61 |
+
# sweep model sizes from 10M to 100B
|
62 |
+
ns = 10 ** np.arange(7, 11, step=2**-4)
|
63 |
+
# using C = 6*N*D, solve for D that maintains the compute budget c
|
64 |
+
ds = c / (6 * ns)
|
65 |
+
# evaluate the loss in each case
|
66 |
+
losses = L(ns, ds)
|
67 |
+
# find the argmin
|
68 |
+
best = np.argmin(losses)
|
69 |
+
|
70 |
+
best_model_size = f"{ns[best]/1e6:.2f}M"
|
71 |
+
best_dataset_size = f"{ds[best]/1e9:.2f}B"
|
72 |
+
|
73 |
+
# plot the loss
|
74 |
+
# plt.figure(figsize=(3,3))
|
75 |
+
plt.plot(ns, losses)
|
76 |
+
plt.xscale('log')
|
77 |
+
# plot a vertical bar at the best model size
|
78 |
+
plt.axvline(ns[best], color='red')
|
79 |
+
plt.xlabel('model size')
|
80 |
+
plt.ylabel('loss')
|
81 |
+
|
82 |
+
return fig, c, round(losses[best], 3), best_model_size, best_dataset_size
|
83 |
+
|
84 |
+
|
85 |
+
if __name__ == "__main__":
|
86 |
+
iface = gr.Interface(
|
87 |
+
fn=plot_pens,
|
88 |
+
layout='vertical',
|
89 |
+
inputs=[
|
90 |
+
gr.Textbox(label="TFLOP/s pre Card",value="40"),
|
91 |
+
gr.Slider(label="System Utilization", minimum=0, maximum=1, step=0.01,value=0.25),
|
92 |
+
gr.Textbox(label="Number of cards",value="1"),
|
93 |
+
gr.Textbox(label="Training Days",value="7")
|
94 |
+
],
|
95 |
+
outputs=[
|
96 |
+
gr.Plot(label="Estimated Loss"),
|
97 |
+
gr.Label(label="Total Compute Budget"),
|
98 |
+
gr.Label(label="Estimated Final Loss"),
|
99 |
+
gr.Label(label="Optimal Model Size"),
|
100 |
+
gr.Label(label="Optimal Dataset Size")
|
101 |
+
],
|
102 |
+
title="Compute-Optimal Model Estimator",
|
103 |
+
description=description,
|
104 |
+
article=article,
|
105 |
+
theme='peach',
|
106 |
+
live=False
|
107 |
+
).launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
seaborn
|
2 |
+
gradio
|
3 |
+
pandas
|
4 |
+
numpy
|