Spaces:
Runtime error
Runtime error
Evaluating code quality before comment generation.
Browse files
app.py
CHANGED
@@ -1,12 +1,151 @@
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
-
from
|
|
|
|
|
4 |
import torch
|
5 |
|
6 |
-
|
7 |
MAX_SOURCE_LENGTH = 512
|
8 |
|
9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
def prepare_models():
|
11 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/codereviewer")
|
12 |
|
@@ -24,7 +163,8 @@ def prepare_models():
|
|
24 |
tokenizer.start_id = tokenizer.get_vocab()["<start>"]
|
25 |
tokenizer.end_id = tokenizer.get_vocab()["<end>"]
|
26 |
|
27 |
-
|
|
|
28 |
|
29 |
model.eval()
|
30 |
return tokenizer, model
|
@@ -104,6 +244,19 @@ def review_commit(user="p4vv37", repository="ueflow", commit="610a8c7b02b946bc9e
|
|
104 |
for diff in fd.diffs:
|
105 |
inputs = torch.tensor([encode_diff(tokenizer, diff, msg, source)], dtype=torch.long).to("cpu")
|
106 |
inputs_mask = inputs.ne(tokenizer.pad_id)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
107 |
preds = model.generate(inputs,
|
108 |
attention_mask=inputs_mask,
|
109 |
use_cache=True,
|
|
|
1 |
import gradio as gr
|
2 |
import requests
|
3 |
+
from torch import nn
|
4 |
+
from torch.nn import CrossEntropyLoss
|
5 |
+
from transformers import AutoTokenizer, T5ForConditionalGeneration, AutoModelForSeq2SeqLM, T5Config
|
6 |
import torch
|
7 |
|
|
|
8 |
MAX_SOURCE_LENGTH = 512
|
9 |
|
10 |
|
11 |
+
class ReviewerModel(T5ForConditionalGeneration):
|
12 |
+
|
13 |
+
def __init__(self, config):
|
14 |
+
super().__init__(config)
|
15 |
+
self.cls_head = nn.Linear(self.config.d_model, 2, bias=True)
|
16 |
+
self.init()
|
17 |
+
|
18 |
+
def init(self):
|
19 |
+
nn.init.xavier_uniform_(self.lm_head.weight)
|
20 |
+
factor = self.config.initializer_factor
|
21 |
+
self.cls_head.weight.data.normal_(mean=0.0, \
|
22 |
+
std=factor * ((self.config.d_model) ** -0.5))
|
23 |
+
self.cls_head.bias.data.zero_()
|
24 |
+
|
25 |
+
def forward(
|
26 |
+
self, *argv, **kwargs
|
27 |
+
):
|
28 |
+
r"""
|
29 |
+
Doc from Huggingface transformers:
|
30 |
+
labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`):
|
31 |
+
Labels for computing the sequence classification/regression loss. Indices should be in :obj:`[-100, 0, ...,
|
32 |
+
config.vocab_size - 1]`. All labels set to ``-100`` are ignored (masked), the loss is only computed for
|
33 |
+
labels in ``[0, ..., config.vocab_size]``
|
34 |
+
Returns:
|
35 |
+
Examples::
|
36 |
+
>>> from transformers import T5Tokenizer, T5ForConditionalGeneration
|
37 |
+
>>> tokenizer = T5Tokenizer.from_pretrained('t5-small')
|
38 |
+
>>> model = T5ForConditionalGeneration.from_pretrained('t5-small')
|
39 |
+
>>> # training
|
40 |
+
>>> input_ids = tokenizer('The <extra_id_0> walks in <extra_id_1> park', return_tensors='pt').input_ids
|
41 |
+
>>> labels = tokenizer('<extra_id_0> cute dog <extra_id_1> the <extra_id_2>', return_tensors='pt').input_ids
|
42 |
+
>>> outputs = model(input_ids=input_ids, labels=labels)
|
43 |
+
>>> loss = outputs.loss
|
44 |
+
>>> logits = outputs.logits
|
45 |
+
>>> # inference
|
46 |
+
>>> input_ids = tokenizer("summarize: studies have shown that owning a dog is good for you", return_tensors="pt").input_ids # Batch size 1
|
47 |
+
>>> outputs = model.generate(input_ids)
|
48 |
+
>>> print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
49 |
+
>>> # studies have shown that owning a dog is good for you.
|
50 |
+
"""
|
51 |
+
if "cls" in kwargs:
|
52 |
+
assert (
|
53 |
+
"input_ids" in kwargs and \
|
54 |
+
"labels" in kwargs and \
|
55 |
+
"attention_mask" in kwargs
|
56 |
+
)
|
57 |
+
return self.cls(
|
58 |
+
input_ids=kwargs["input_ids"],
|
59 |
+
labels=kwargs["labels"],
|
60 |
+
attention_mask=kwargs["attention_mask"],
|
61 |
+
)
|
62 |
+
if "input_labels" in kwargs:
|
63 |
+
assert (
|
64 |
+
"input_ids" in kwargs and \
|
65 |
+
"input_labels" in kwargs and \
|
66 |
+
"decoder_input_ids" in kwargs and \
|
67 |
+
"attention_mask" in kwargs and \
|
68 |
+
"decoder_attention_mask" in kwargs
|
69 |
+
), "Please give these arg keys."
|
70 |
+
input_ids = kwargs["input_ids"]
|
71 |
+
input_labels = kwargs["input_labels"]
|
72 |
+
decoder_input_ids = kwargs["decoder_input_ids"]
|
73 |
+
attention_mask = kwargs["attention_mask"]
|
74 |
+
decoder_attention_mask = kwargs["decoder_attention_mask"]
|
75 |
+
if "encoder_loss" not in kwargs:
|
76 |
+
encoder_loss = True
|
77 |
+
else:
|
78 |
+
encoder_loss = kwargs["encoder_loss"]
|
79 |
+
return self.review_forward(input_ids, input_labels, decoder_input_ids, attention_mask,
|
80 |
+
decoder_attention_mask, encoder_loss)
|
81 |
+
return super().forward(*argv, **kwargs)
|
82 |
+
|
83 |
+
def cls(
|
84 |
+
self,
|
85 |
+
input_ids,
|
86 |
+
labels,
|
87 |
+
attention_mask,
|
88 |
+
):
|
89 |
+
encoder_outputs = self.encoder( \
|
90 |
+
input_ids=input_ids,
|
91 |
+
attention_mask=attention_mask,
|
92 |
+
output_attentions=False,
|
93 |
+
return_dict=False
|
94 |
+
)
|
95 |
+
hidden_states = encoder_outputs[0]
|
96 |
+
first_hidden = hidden_states[:, 0, :]
|
97 |
+
first_hidden = nn.Dropout(0.3)(first_hidden)
|
98 |
+
logits = self.cls_head(first_hidden)
|
99 |
+
loss_fct = CrossEntropyLoss()
|
100 |
+
if labels != None:
|
101 |
+
loss = loss_fct(logits, labels)
|
102 |
+
return loss
|
103 |
+
return logits
|
104 |
+
|
105 |
+
def review_forward(
|
106 |
+
self,
|
107 |
+
input_ids,
|
108 |
+
input_labels,
|
109 |
+
decoder_input_ids,
|
110 |
+
attention_mask,
|
111 |
+
decoder_attention_mask,
|
112 |
+
encoder_loss=True
|
113 |
+
):
|
114 |
+
encoder_outputs = self.encoder( \
|
115 |
+
input_ids=input_ids,
|
116 |
+
attention_mask=attention_mask,
|
117 |
+
output_attentions=False,
|
118 |
+
return_dict=False
|
119 |
+
)
|
120 |
+
hidden_states = encoder_outputs[0]
|
121 |
+
decoder_inputs = self._shift_right(decoder_input_ids)
|
122 |
+
# Decode
|
123 |
+
decoder_outputs = self.decoder(
|
124 |
+
input_ids=decoder_inputs,
|
125 |
+
attention_mask=decoder_attention_mask,
|
126 |
+
encoder_hidden_states=hidden_states,
|
127 |
+
encoder_attention_mask=attention_mask,
|
128 |
+
output_attentions=False,
|
129 |
+
return_dict=False
|
130 |
+
)
|
131 |
+
sequence_output = decoder_outputs[0]
|
132 |
+
if self.config.tie_word_embeddings: # this is True default
|
133 |
+
sequence_output = sequence_output * (self.model_dim ** -0.5)
|
134 |
+
if encoder_loss:
|
135 |
+
# print(self.encoder.get_input_embeddings().weight.shape)
|
136 |
+
cls_logits = nn.functional.linear(hidden_states, self.encoder.get_input_embeddings().weight)
|
137 |
+
# cls_logits = self.cls_head(hidden_states)
|
138 |
+
lm_logits = self.lm_head(sequence_output)
|
139 |
+
if decoder_input_ids is not None:
|
140 |
+
lm_loss_fct = CrossEntropyLoss(ignore_index=0) # Warning: PAD_ID should be 0
|
141 |
+
loss = lm_loss_fct(lm_logits.view(-1, lm_logits.size(-1)), decoder_input_ids.view(-1))
|
142 |
+
if encoder_loss and input_labels is not None:
|
143 |
+
cls_loss_fct = CrossEntropyLoss(ignore_index=-100)
|
144 |
+
loss += cls_loss_fct(cls_logits.view(-1, cls_logits.size(-1)), input_labels.view(-1))
|
145 |
+
return loss
|
146 |
+
return cls_logits, lm_logits
|
147 |
+
|
148 |
+
|
149 |
def prepare_models():
|
150 |
tokenizer = AutoTokenizer.from_pretrained("microsoft/codereviewer")
|
151 |
|
|
|
163 |
tokenizer.start_id = tokenizer.get_vocab()["<start>"]
|
164 |
tokenizer.end_id = tokenizer.get_vocab()["<end>"]
|
165 |
|
166 |
+
config = T5Config.from_pretrained("microsoft/codereviewer")
|
167 |
+
model = ReviewerModel.from_pretrained("microsoft/codereviewer", config=config)
|
168 |
|
169 |
model.eval()
|
170 |
return tokenizer, model
|
|
|
244 |
for diff in fd.diffs:
|
245 |
inputs = torch.tensor([encode_diff(tokenizer, diff, msg, source)], dtype=torch.long).to("cpu")
|
246 |
inputs_mask = inputs.ne(tokenizer.pad_id)
|
247 |
+
logits = model(
|
248 |
+
input_ids=inputs,
|
249 |
+
cls=True,
|
250 |
+
attention_mask=inputs_mask,
|
251 |
+
labels=None,
|
252 |
+
use_cache=True,
|
253 |
+
num_beams=5,
|
254 |
+
early_stopping=True,
|
255 |
+
max_length=100
|
256 |
+
)
|
257 |
+
needs_review = torch.argmax(logits, dim=-1).cpu().numpy()[0]
|
258 |
+
if not needs_review:
|
259 |
+
continue
|
260 |
preds = model.generate(inputs,
|
261 |
attention_mask=inputs_mask,
|
262 |
use_cache=True,
|