File size: 1,203 Bytes
a2b702a
 
5cdd622
f71bd31
df08274
d9238a9
a2b702a
df08274
0cc18a8
 
 
a2b702a
a652ef7
0cc18a8
 
 
a2b702a
 
 
c8f5bbf
3ab2b72
a2b702a
 
 
943f5e8
f71bd31
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
from huggingface_hub import from_pretrained_fastai
import gradio as gr
from fastai.vision.all import *
from icevision.all import *
from icevision.models.checkpoint import *
import PIL

checkpoint_path = "efficientdetMapaches.pth"
model = models.ross.efficientdet.model(backbone=models.ross.efficientdet.backbones.tf_lite0(pretrained=True),
                                       num_classes=2,
                                       img_size=384)

state_dict = torch.load(checkpoint_path, map_location=torch.device('cpu'))
model.load_state_dict(state_dict)

infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(384),tfms.A.Normalize()])

# Definimos una función que se encarga de llevar a cabo las predicciones
def predict(img):
    img = PIL.Image.fromarray(img, "RGB")
    pred_dict =  models.ross.efficientdet.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=ClassMap(['raccoon']), detection_threshold=0.5)
    return pred_dict["img"]
    
# Creamos la interfaz y la lanzamos. 
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=[gr.outputs.Image(type="pil", label="VFNet Inference")],
             examples=['raccoon-161.jpg','raccoon-162.jpg']).launch(share=False)