|
from huggingface_hub import from_pretrained_fastai |
|
import gradio as gr |
|
from icevision.all import * |
|
|
|
repo_id = "paascorb/image-detection-efficientdet" |
|
|
|
learner = from_pretrained_fastai(repo_id) |
|
|
|
|
|
def predict(img): |
|
img = PIL.Image.open('mapaches/test/images/raccoon-190.jpg') |
|
infer_tfms = tfms.A.Adapter([*tfms.A.resize_and_pad(size),tfms.A.Normalize()]) |
|
pred_dict = models.ross.efficientdet.end2end_detect(img, infer_tfms, model.to("cpu"), class_map=class_map, detection_threshold=0.5) |
|
return pred_dict["img"] |
|
|
|
|
|
gr.Interface(fn=predict, inputs=gr.inputs.Image(shape=(128, 128)), outputs=gr.outputs.Image(shape(128,128)), |
|
examples=['raccoon-161.jpg','raccoon-162.jpg']).launch(share=False) |