Spaces:
Runtime error
Runtime error
File size: 16,310 Bytes
fdf7fb5 1ec839c b70fd06 56efa96 7ec67ba 56efa96 7ec67ba 252c838 fdf7fb5 56efa96 7d30715 56efa96 fdf7fb5 56efa96 1944061 56efa96 fdf7fb5 56efa96 1944061 56efa96 6e2bb61 fdf7fb5 dd797b5 429cb16 fdf7fb5 dd797b5 fdf7fb5 dd797b5 fdf7fb5 7d30715 fdf7fb5 dd797b5 a0b7f02 dd797b5 1944061 dd797b5 fdf7fb5 dd797b5 1ec839c 56efa96 1944061 fdf7fb5 56efa96 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 |
import gradio as gr
from pathlib import Path
import os
from transformers import AutoTokenizer, AutoModel, AutoModelForQuestionAnswering, pipeline
from transformers import MarianMTModel, MarianTokenizer
from nltk.tokenize import sent_tokenize
from nltk.tokenize import LineTokenizer
import math
import torch
import nltk
import numpy as np
import time
import hashlib
from tqdm import tqdm
device = "cuda:0" if torch.cuda.is_available() else "cpu"
import textract
from scipy.special import softmax
import pandas as pd
from datetime import datetime
nltk.download('punkt')
docs = None
tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1")
model = AutoModel.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1").to(device).eval()
tokenizer_ans = AutoTokenizer.from_pretrained("deepset/roberta-large-squad2")
model_ans = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-large-squad2").to(device).eval()
if device == 'cuda:0':
pipe = pipeline("question-answering",model_ans,tokenizer =tokenizer_ans,device = 0)
else:
pipe = pipeline("question-answering",model_ans,tokenizer =tokenizer_ans)
def validate_dataset(dataset):
global docs
docs = None # clear it out if dataset is modified
docs_ready = dataset.iloc[-1, 0] != ""
if docs_ready:
return "✨Listo✨"
else:
return "⚠️Esperando documentos..."
def request_pathname(files):
if files is None:
return [[]]
return [[file.name, file.name.split('/')[-1]] for file in files]
def cls_pooling(model_output):
return model_output.last_hidden_state[:,0]
def encode_query(query):
encoded_input = tokenizer(query, truncation=True, return_tensors='pt').to(device)
with torch.no_grad():
model_output = model(**encoded_input, return_dict=True)
embeddings = cls_pooling(model_output)
return embeddings.cpu()
def encode_docs(docs,maxlen = 64, stride = 32):
encoded_input = []
embeddings = []
spans = []
file_names = []
name, text = docs
text = text.split(" ")
if len(text) < maxlen:
text = " ".join(text)
encoded_input.append(tokenizer(temp_text, return_tensors='pt', truncation = True).to(device))
spans.append(temp_text)
file_names.append(name)
else:
num_iters = int(len(text)/maxlen)+1
for i in range(num_iters):
if i == 0:
temp_text = " ".join(text[i*maxlen:(i+1)*maxlen+stride])
else:
temp_text = " ".join(text[(i-1)*maxlen:(i)*maxlen][-stride:] + text[i*maxlen:(i+1)*maxlen])
encoded_input.append(tokenizer(temp_text, return_tensors='pt', truncation = True).to(device))
spans.append(temp_text)
file_names.append(name)
with torch.no_grad():
for encoded in tqdm(encoded_input):
model_output = model(**encoded, return_dict=True)
embeddings.append(cls_pooling(model_output))
embeddings = np.float32(torch.stack(embeddings).transpose(0, 1).cpu())
np.save("emb_{}.npy".format(name),dict(zip(list(range(len(embeddings))),embeddings)))
np.save("spans_{}.npy".format(name),dict(zip(list(range(len(spans))),spans)))
np.save("file_{}.npy".format(name),dict(zip(list(range(len(file_names))),file_names)))
return embeddings, spans, file_names
def predict(query,data):
name_to_save = data.name.split("/")[-1].split(".")[0][:-8]
k=20
st = str([query,name_to_save])
st_hashed = str(hashlib.sha256(st.encode()).hexdigest()) #just to speed up examples load
hist = st + " " + st_hashed
now = datetime.now()
current_time = now.strftime("%H:%M:%S")
try: #if the same question was already asked for this document, upload question and answer
df = pd.read_csv("{}.csv".format(hash(st)))
list_outputs = []
for i in range(k):
temp = [df.iloc[n] for n in range(k)][i]
tupla = (temp.Respuesta, temp.Contexto, temp.Probabilidades)
# text = ''
# text += 'Probabilidades: '+ temp.Probabilidades + '\n\n'
# text += 'Respuesta: ' +temp.Respuesta + '\n\n'
# text += 'Contexto: '+temp.Contexto + '\n\n'
list_outputs.append(tupla)
return list_outputs[0]
except Exception as e:
print(e)
print(st)
if name_to_save+".txt" in os.listdir(): #if the document was already used, load its embeddings
doc_emb = np.load('emb_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
doc_text = np.load('spans_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
file_names_dicto = np.load('file_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
doc_emb = np.array(list(doc_emb.values())).reshape(-1,768)
doc_text = list(doc_text.values())
file_names = list(file_names_dicto.values())
else:
text = textract.process("{}".format(data.name)).decode('utf8')
text = text.replace("\r", " ")
text = text.replace("\n", " ")
text = text.replace(" . "," ")
doc_emb, doc_text, file_names = encode_docs((name_to_save,text),maxlen = 64, stride = 32)
doc_emb = doc_emb.reshape(-1, 768)
with open("{}.txt".format(name_to_save),"w",encoding="utf-8") as f:
f.write(text)
#once embeddings are calculated, run MIPS
start = time.time()
query_emb = encode_query(query)
scores = np.matmul(query_emb, doc_emb.transpose(1,0))[0].tolist()
doc_score_pairs = list(zip(doc_text, scores, file_names))
doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
probs_sum = 0
probs = softmax(sorted(scores,reverse = True)[:k])
table = {"Contexto":[],"Respuesta":[],"Probabilidades":[]}
#get answers for each pair of question (from user) and top best passages
for i, (passage, _, names) in enumerate(doc_score_pairs[:k]):
passage = passage.replace("\n","")
#passage = passage.replace(" . "," ")
if probs[i] > 0.1 or (i < 3 and probs[i] > 0.05): #generate answers for more likely passages but no less than 2
QA = {'question':query,'context':passage}
ans = pipe(QA)
probabilities = "P(a|p): {}, P(a|p,q): {}, P(p|q): {}".format(round(ans["score"],5),
round(ans["score"]*probs[i],5),
round(probs[i],5))
table["Contexto"].append(passage)
table["Respuesta"].append(str(ans["answer"]).upper())
table["Probabilidades"].append(probabilities)
else:
table["Contexto"].append(passage)
table["Respuesta"].append("no_answer_calculated")
table["Probabilidades"].append("P(p|q): {}".format(round(probs[i],5)))
#format answers for ~nice output and save it for future (if the same question is asked again using same pdf)
df = pd.DataFrame(table)
print(df)
print("time: "+ str(time.time()-start))
with open("HISTORY.txt","a", encoding = "utf-8") as f:
f.write(hist)
f.write(" " + str(current_time))
f.write("\n")
f.close()
df.to_csv("{}.csv".format(hash(st)), index=False)
list_outputs = []
for i in range(k):
temp = [df.iloc[n] for n in range(k)][i]
tupla = (temp.Respuesta, temp.Contexto, temp.Probabilidades)
# text = ''
# text += 'Probabilidades: '+ temp.Probabilidades + '\n\n'
# text += 'Respuesta: ' +temp.Respuesta + '\n\n'
# text += 'Contexto: '+temp.Contexto + '\n\n'
list_outputs.append(tupla)
return list_outputs[0]
with gr.Blocks() as demo:
gr.Markdown("""
# Document Question and Answer adaptado al castellano por Pablo Ascorbe.
Este espacio ha sido clonado y adaptado de: https://huggingface.co/spaces/whitead/paper-qa
La idea es utilizar un modelo preentrenado de HuggingFace como "distilbert-base-cased-distilled-squad"
y responder las preguntas en inglés, para ello, será necesario hacer primero una traducción de los textos en castellano
a inglés y luego volver a traducir en sentido contrario.
## Instrucciones:
Adjunte su documento, ya sea en formato .txt o .pdf, y pregunte lo que desee.
""")
file = gr.File(
label="Sus documentos subidos (PDF o txt)")
# dataset = gr.Dataframe(
# headers=["filepath", "citation string"],
# datatype=["str", "str"],
# col_count=(2, "fixed"),
# interactive=True,
# label="Documentos y citas"
# )
# buildb = gr.Textbox("⚠️Esperando documentos...",
# label="Estado", interactive=False, show_label=True)
# dataset.change(validate_dataset, inputs=[
# dataset], outputs=[buildb])
# uploaded_files.change(request_pathname, inputs=[
# uploaded_files], outputs=[dataset])
query = gr.Textbox(
placeholder="Introduzca su pregunta aquí...", label="Pregunta")
ask = gr.Button("Preguntar")
gr.Markdown("## Respuesta")
answer = gr.Markdown(label="Respuesta")
prob = gr.Markdown(label="Probabilidades")
with gr.Accordion("Contexto", open=False):
gr.Markdown(
"### Contexto\n\nEl siguiente contexto ha sido utilizado para generar la respuesta:")
context = gr.Markdown(label="Contexto")
# ask.click(fn=do_ask, inputs=[query, buildb,
# dataset], outputs=[answer, context])
ask.click(fn=predict, inputs=[query,
file], outputs=[answer, context, prob])
examples = ["¿Cuándo suelen comenzar las adicciones?","Entrevista Miguel Ruiz.txt"]
demo.queue(concurrency_count=20)
demo.launch(show_error=True)
# iface = gr.Interface(fn =predict,
# inputs = [gr.inputs.Textbox(default="What is Open-domain question answering?"),
# gr.inputs.File(),
# ],
# outputs = [
# gr.outputs.Carousel(['text']),
# ],
# description=description,
# title = title,
# allow_flagging ="manual",flagging_options = ["correct","wrong"],
# allow_screenshot=False)
# iface.launch(enable_queue=True, show_error =True)
# Definimos los modelos:
# Traducción
# mname = "Helsinki-NLP/opus-mt-es-en"
# tokenizer_es_en = MarianTokenizer.from_pretrained(mname)
# model_es_en = MarianMTModel.from_pretrained(mname)
# model_es_en.to(device)
# mname = "Helsinki-NLP/opus-mt-en-es"
# tokenizer_en_es = MarianTokenizer.from_pretrained(mname)
# model_en_es = MarianMTModel.from_pretrained(mname)
# model_en_es.to(device)
# lt = LineTokenizer()
# Responder preguntas
# question_answerer = pipeline("question-answering", model='distilbert-base-cased-distilled-squad')
# def request_pathname(files):
# if files is None:
# return [[]]
# return [[file.name, file.name.split('/')[-1]] for file in files]
# def traducir_parrafos(parrafos, tokenizer, model, tam_bloque=8, ):
# parrafos_traducidos = []
# for parrafo in parrafos:
# frases = sent_tokenize(parrafo)
# batches = math.ceil(len(frases) / tam_bloque)
# traducido = []
# for i in range(batches):
# bloque_enviado = frases[i*tam_bloque:(i+1)*tam_bloque]
# model_inputs = tokenizer(bloque_enviado, return_tensors="pt",
# padding=True, truncation=True,
# max_length=500).to(device)
# with torch.no_grad():
# bloque_traducido = model.generate(**model_inputs)
# traducido += bloque_traducido
# traducido = [tokenizer.decode(t, skip_special_tokens=True) for t in traducido]
# parrafos_traducidos += [" ".join(traducido)]
# return parrafos_traducidos
# def traducir_es_en(texto):
# parrafos = lt.tokenize(texto)
# par_tra = traducir_parrafos(parrafos, tokenizer_es_en, model_es_en)
# return "\n".join(par_tra)
# def traducir_en_es(texto):
# parrafos = lt.tokenize(texto)
# par_tra = traducir_parrafos(parrafos, tokenizer_en_es, model_en_es)
# return "\n".join(par_tra)
# def validate_dataset(dataset):
# global docs
# docs = None # clear it out if dataset is modified
# docs_ready = dataset.iloc[-1, 0] != ""
# if docs_ready:
# return "✨Listo✨"
# else:
# return "⚠️Esperando documentos..."
# def do_ask(question, button, dataset):
# global docs
# docs_ready = dataset.iloc[-1, 0] != ""
# if button == "✨Listo✨" and docs_ready:
# for _, row in dataset.iterrows():
# path = row['filepath']
# text = Path(f'{path}').read_text()
# text_en = traducir_es_en(text)
# QA_input = {
# 'question': traducir_es_en(question),
# 'context': text_en
# }
# return traducir_en_es(question_answerer(QA_input)['answer'])
# else:
# return ""
# # def do_ask(question, button, dataset, progress=gr.Progress()):
# # global docs
# # docs_ready = dataset.iloc[-1, 0] != ""
# # if button == "✨Listo✨" and docs_ready:
# # if docs is None: # don't want to rebuild index if it's already built
# # import paperqa
# # docs = paperqa.Docs()
# # # dataset is pandas dataframe
# # for _, row in dataset.iterrows():
# # key = None
# # if ',' not in row['citation string']:
# # key = row['citation string']
# # docs.add(row['filepath'], row['citation string'], key=key)
# # else:
# # return ""
# # progress(0, "Construyendo índices...")
# # docs._build_faiss_index()
# # progress(0.25, "Encolando...")
# # result = docs.query(question)
# # progress(1.0, "¡Hecho!")
# # return result.formatted_answer, result.context
# with gr.Blocks() as demo:
# gr.Markdown("""
# # Document Question and Answer adaptado al castellano por Pablo Ascorbe.
# Este espacio ha sido clonado y adaptado de: https://huggingface.co/spaces/whitead/paper-qa
# La idea es utilizar un modelo preentrenado de HuggingFace como "distilbert-base-cased-distilled-squad"
# y responder las preguntas en inglés, para ello, será necesario hacer primero una traducción de los textos en castellano
# a inglés y luego volver a traducir en sentido contrario.
# ## Instrucciones:
# Adjunte su documento, ya sea en formato .txt o .pdf, y pregunte lo que desee.
# """)
# uploaded_files = gr.File(
# label="Sus documentos subidos (PDF o txt)", file_count="multiple", )
# dataset = gr.Dataframe(
# headers=["filepath", "citation string"],
# datatype=["str", "str"],
# col_count=(2, "fixed"),
# interactive=True,
# label="Documentos y citas"
# )
# buildb = gr.Textbox("⚠️Esperando documentos...",
# label="Estado", interactive=False, show_label=True)
# dataset.change(validate_dataset, inputs=[
# dataset], outputs=[buildb])
# uploaded_files.change(request_pathname, inputs=[
# uploaded_files], outputs=[dataset])
# query = gr.Textbox(
# placeholder="Introduzca su pregunta aquí...", label="Pregunta")
# ask = gr.Button("Preguntar")
# gr.Markdown("## Respuesta")
# answer = gr.Markdown(label="Respuesta")
# with gr.Accordion("Contexto", open=False):
# gr.Markdown(
# "### Contexto\n\nEl siguiente contexto ha sido utilizado para generar la respuesta:")
# context = gr.Markdown(label="Contexto")
# # ask.click(fn=do_ask, inputs=[query, buildb,
# # dataset], outputs=[answer, context])
# ask.click(fn=do_ask, inputs=[query, buildb,
# dataset], outputs=[answer])
# demo.queue(concurrency_count=20)
# demo.launch(show_error=True) |