File size: 16,310 Bytes
fdf7fb5
1ec839c
b70fd06
56efa96
7ec67ba
 
 
 
 
 
56efa96
 
 
 
 
 
 
 
 
 
7ec67ba
252c838
fdf7fb5
 
56efa96
 
 
 
 
 
 
 
 
7d30715
 
 
 
 
 
 
 
 
 
 
 
 
 
56efa96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf7fb5
 
56efa96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944061
 
 
 
 
 
 
56efa96
 
 
fdf7fb5
56efa96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1944061
 
 
 
 
 
56efa96
6e2bb61
fdf7fb5
 
 
dd797b5
 
 
 
429cb16
 
 
fdf7fb5
dd797b5
fdf7fb5
dd797b5
 
fdf7fb5
7d30715
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fdf7fb5
dd797b5
a0b7f02
dd797b5
 
1944061
dd797b5
fdf7fb5
dd797b5
 
1ec839c
 
56efa96
1944061
 
 
fdf7fb5
 
56efa96
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import gradio as gr
from pathlib import Path
import os
from transformers import AutoTokenizer, AutoModel, AutoModelForQuestionAnswering, pipeline
from transformers import MarianMTModel, MarianTokenizer
from nltk.tokenize import sent_tokenize
from nltk.tokenize import LineTokenizer
import math
import torch
import nltk
import numpy as np
import time
import hashlib
from tqdm import tqdm

device = "cuda:0" if torch.cuda.is_available() else "cpu"
import textract
from scipy.special import softmax
import pandas as pd
from datetime import datetime
nltk.download('punkt')

docs = None

tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1")
model = AutoModel.from_pretrained("sentence-transformers/multi-qa-mpnet-base-dot-v1").to(device).eval()
tokenizer_ans = AutoTokenizer.from_pretrained("deepset/roberta-large-squad2")
model_ans = AutoModelForQuestionAnswering.from_pretrained("deepset/roberta-large-squad2").to(device).eval()

if device == 'cuda:0':
    pipe = pipeline("question-answering",model_ans,tokenizer =tokenizer_ans,device = 0)
else:
    pipe = pipeline("question-answering",model_ans,tokenizer =tokenizer_ans)

def validate_dataset(dataset):
    global docs
    docs = None  # clear it out if dataset is modified
    docs_ready = dataset.iloc[-1, 0] != ""
    if docs_ready:
        return "✨Listo✨"
    else:
        return "⚠️Esperando documentos..."

def request_pathname(files):
    if files is None:
        return [[]]
    return [[file.name, file.name.split('/')[-1]] for file in files]
    
def cls_pooling(model_output):
    return model_output.last_hidden_state[:,0]

def encode_query(query):
    encoded_input = tokenizer(query, truncation=True, return_tensors='pt').to(device)

    with torch.no_grad():
        model_output = model(**encoded_input, return_dict=True)

    embeddings = cls_pooling(model_output)

    return embeddings.cpu()


def encode_docs(docs,maxlen = 64, stride = 32):
    encoded_input = []
    embeddings = []
    spans = []
    file_names = []
    name, text = docs
    
    text = text.split(" ")
    if len(text) < maxlen:
        text = " ".join(text)
        
        encoded_input.append(tokenizer(temp_text, return_tensors='pt', truncation = True).to(device))
        spans.append(temp_text)
        file_names.append(name)

    else:
        num_iters = int(len(text)/maxlen)+1
        for i in range(num_iters):
            if i == 0:
                temp_text = " ".join(text[i*maxlen:(i+1)*maxlen+stride])
            else:
                temp_text = " ".join(text[(i-1)*maxlen:(i)*maxlen][-stride:] + text[i*maxlen:(i+1)*maxlen])

            encoded_input.append(tokenizer(temp_text, return_tensors='pt', truncation = True).to(device))
            spans.append(temp_text)
            file_names.append(name)

    with torch.no_grad():
        for encoded in tqdm(encoded_input): 
            model_output = model(**encoded, return_dict=True)
            embeddings.append(cls_pooling(model_output))
    
    embeddings = np.float32(torch.stack(embeddings).transpose(0, 1).cpu())
    
    np.save("emb_{}.npy".format(name),dict(zip(list(range(len(embeddings))),embeddings))) 
    np.save("spans_{}.npy".format(name),dict(zip(list(range(len(spans))),spans)))
    np.save("file_{}.npy".format(name),dict(zip(list(range(len(file_names))),file_names)))
    
    return embeddings, spans, file_names
   
def predict(query,data):
    name_to_save = data.name.split("/")[-1].split(".")[0][:-8]
    k=20
    st = str([query,name_to_save])
    st_hashed = str(hashlib.sha256(st.encode()).hexdigest()) #just to speed up examples load
    hist = st + " " + st_hashed 
    now = datetime.now()
    current_time = now.strftime("%H:%M:%S")
    
    try: #if the same question was already asked for this document, upload question and answer
        df = pd.read_csv("{}.csv".format(hash(st)))
        list_outputs = []
        for i in range(k):
            temp = [df.iloc[n] for n in range(k)][i]
            tupla = (temp.Respuesta, temp.Contexto, temp.Probabilidades)
            # text = ''
            # text += 'Probabilidades: '+ temp.Probabilidades + '\n\n' 
            # text += 'Respuesta: ' +temp.Respuesta + '\n\n' 
            # text += 'Contexto: '+temp.Contexto + '\n\n' 
            list_outputs.append(tupla)
        return list_outputs[0]
    except Exception as e:
        print(e)
        print(st)

    if name_to_save+".txt" in os.listdir(): #if the document was already used, load its embeddings
        doc_emb = np.load('emb_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
        doc_text = np.load('spans_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
        file_names_dicto = np.load('file_{}.npy'.format(name_to_save),allow_pickle='TRUE').item()
        
        doc_emb = np.array(list(doc_emb.values())).reshape(-1,768)
        doc_text = list(doc_text.values())
        file_names = list(file_names_dicto.values())
    
    else:
        text = textract.process("{}".format(data.name)).decode('utf8')
        text = text.replace("\r", " ")
        text = text.replace("\n", " ")
        text = text.replace(" . "," ")
        
        doc_emb, doc_text, file_names = encode_docs((name_to_save,text),maxlen = 64, stride = 32)
        
        doc_emb = doc_emb.reshape(-1, 768)
        with open("{}.txt".format(name_to_save),"w",encoding="utf-8") as f:
            f.write(text)
    
    #once embeddings are calculated, run MIPS
    start = time.time()
    query_emb = encode_query(query)
    
    scores = np.matmul(query_emb, doc_emb.transpose(1,0))[0].tolist()
    doc_score_pairs = list(zip(doc_text, scores, file_names))
    doc_score_pairs = sorted(doc_score_pairs, key=lambda x: x[1], reverse=True)
    
    probs_sum = 0
    probs = softmax(sorted(scores,reverse = True)[:k])
    table = {"Contexto":[],"Respuesta":[],"Probabilidades":[]}
    
    
    #get answers for each pair of question (from user) and top best passages
    for i, (passage, _, names) in enumerate(doc_score_pairs[:k]):
        passage = passage.replace("\n","")
        #passage = passage.replace(" . "," ")
        
        if probs[i] > 0.1 or (i < 3 and probs[i] > 0.05): #generate answers for more likely passages but no less than 2
            QA = {'question':query,'context':passage}
            ans = pipe(QA)
            probabilities = "P(a|p): {}, P(a|p,q): {}, P(p|q): {}".format(round(ans["score"],5), 
                                                                          round(ans["score"]*probs[i],5), 
                                                                          round(probs[i],5))
            table["Contexto"].append(passage)
            table["Respuesta"].append(str(ans["answer"]).upper())
            table["Probabilidades"].append(probabilities)
        else:
            table["Contexto"].append(passage)
            table["Respuesta"].append("no_answer_calculated")
            table["Probabilidades"].append("P(p|q): {}".format(round(probs[i],5)))
            
        
    #format answers for ~nice output and save it for future (if the same question is asked again using same pdf)
    df = pd.DataFrame(table)
    print(df)
    print("time: "+ str(time.time()-start))
    
    with open("HISTORY.txt","a", encoding = "utf-8") as f:
        f.write(hist)
        f.write(" " + str(current_time))
        f.write("\n")
        f.close()
    df.to_csv("{}.csv".format(hash(st)), index=False)
    
    list_outputs = []
    for i in range(k):
        temp = [df.iloc[n] for n in range(k)][i]
        tupla = (temp.Respuesta, temp.Contexto, temp.Probabilidades)
        # text = ''
        # text += 'Probabilidades: '+ temp.Probabilidades + '\n\n' 
        # text += 'Respuesta: ' +temp.Respuesta + '\n\n' 
        # text += 'Contexto: '+temp.Contexto + '\n\n' 
        list_outputs.append(tupla)
    
    return list_outputs[0]

with gr.Blocks() as demo:
    gr.Markdown("""
    # Document Question and Answer adaptado al castellano por Pablo Ascorbe.

    Este espacio ha sido clonado y adaptado de: https://huggingface.co/spaces/whitead/paper-qa

    La idea es utilizar un modelo preentrenado de HuggingFace como "distilbert-base-cased-distilled-squad"
    y responder las preguntas en inglés, para ello, será necesario hacer primero una traducción de los textos en castellano
    a inglés y luego volver a traducir en sentido contrario.

    ## Instrucciones:

    Adjunte su documento, ya sea en formato .txt o .pdf, y pregunte lo que desee.
    
    """)
    file = gr.File(
        label="Sus documentos subidos (PDF o txt)")
    # dataset = gr.Dataframe(
    #     headers=["filepath", "citation string"],
    #     datatype=["str", "str"],
    #     col_count=(2, "fixed"),
    #     interactive=True,
    #     label="Documentos y citas"
    # )
    # buildb = gr.Textbox("⚠️Esperando documentos...",
    #                     label="Estado", interactive=False, show_label=True)
    # dataset.change(validate_dataset, inputs=[
    #                dataset], outputs=[buildb])
    # uploaded_files.change(request_pathname, inputs=[
    #                       uploaded_files], outputs=[dataset])
    query = gr.Textbox(
        placeholder="Introduzca su pregunta aquí...", label="Pregunta")
    ask = gr.Button("Preguntar")
    gr.Markdown("## Respuesta")
    answer = gr.Markdown(label="Respuesta")
    prob = gr.Markdown(label="Probabilidades")
    with gr.Accordion("Contexto", open=False):
        gr.Markdown(
            "### Contexto\n\nEl siguiente contexto ha sido utilizado para generar la respuesta:")
        context = gr.Markdown(label="Contexto")
    # ask.click(fn=do_ask, inputs=[query, buildb,
    #                              dataset], outputs=[answer, context])
    ask.click(fn=predict, inputs=[query,
                                 file], outputs=[answer, context, prob])

    examples = ["¿Cuándo suelen comenzar las adicciones?","Entrevista Miguel Ruiz.txt"]

demo.queue(concurrency_count=20)
demo.launch(show_error=True)

# iface = gr.Interface(fn =predict,
#                     inputs = [gr.inputs.Textbox(default="What is Open-domain question answering?"),
#                               gr.inputs.File(),
#                     ],
#     outputs = [
#         gr.outputs.Carousel(['text']),
#             ],
#     description=description,
#     title = title,
# allow_flagging ="manual",flagging_options = ["correct","wrong"],
#                      allow_screenshot=False)

# iface.launch(enable_queue=True, show_error =True)

# Definimos los modelos:
# Traducción
# mname = "Helsinki-NLP/opus-mt-es-en"
# tokenizer_es_en = MarianTokenizer.from_pretrained(mname)
# model_es_en = MarianMTModel.from_pretrained(mname)
# model_es_en.to(device)

# mname = "Helsinki-NLP/opus-mt-en-es"
# tokenizer_en_es = MarianTokenizer.from_pretrained(mname)
# model_en_es = MarianMTModel.from_pretrained(mname)
# model_en_es.to(device)

# lt = LineTokenizer()

# Responder preguntas
# question_answerer = pipeline("question-answering", model='distilbert-base-cased-distilled-squad')

# def request_pathname(files):
#     if files is None:
#         return [[]]
#     return [[file.name, file.name.split('/')[-1]] for file in files]

# def traducir_parrafos(parrafos, tokenizer, model, tam_bloque=8, ):
#   parrafos_traducidos = []
#   for parrafo in parrafos:
#     frases = sent_tokenize(parrafo)
#     batches = math.ceil(len(frases) / tam_bloque)     
#     traducido = []
#     for i in range(batches):

#         bloque_enviado = frases[i*tam_bloque:(i+1)*tam_bloque]
#         model_inputs = tokenizer(bloque_enviado, return_tensors="pt", 
#                                  padding=True, truncation=True, 
#                                  max_length=500).to(device)
#         with torch.no_grad():
#             bloque_traducido = model.generate(**model_inputs)
#         traducido += bloque_traducido
#     traducido = [tokenizer.decode(t, skip_special_tokens=True) for t in traducido]
#     parrafos_traducidos += [" ".join(traducido)]
#   return parrafos_traducidos

# def traducir_es_en(texto):
#     parrafos = lt.tokenize(texto)
#     par_tra = traducir_parrafos(parrafos, tokenizer_es_en, model_es_en) 
#     return "\n".join(par_tra)    

# def traducir_en_es(texto):
#     parrafos = lt.tokenize(texto)
#     par_tra = traducir_parrafos(parrafos, tokenizer_en_es, model_en_es) 
#     return "\n".join(par_tra)

# def validate_dataset(dataset):
#     global docs
#     docs = None  # clear it out if dataset is modified
#     docs_ready = dataset.iloc[-1, 0] != ""
#     if docs_ready:
#         return "✨Listo✨"
#     else:
#         return "⚠️Esperando documentos..."

# def do_ask(question, button, dataset):
#     global docs
#     docs_ready = dataset.iloc[-1, 0] != ""
#     if button == "✨Listo✨" and docs_ready:
#         for _, row in dataset.iterrows():
#             path = row['filepath']
#             text = Path(f'{path}').read_text()
#             text_en = traducir_es_en(text)
#             QA_input = {
#                 'question': traducir_es_en(question),
#                 'context': text_en
#             }
#             return traducir_en_es(question_answerer(QA_input)['answer'])
#     else:        
#         return ""

# # def do_ask(question, button, dataset, progress=gr.Progress()):
# #     global docs
# #     docs_ready = dataset.iloc[-1, 0] != ""
# #     if button == "✨Listo✨" and docs_ready:
# #         if docs is None:  # don't want to rebuild index if it's already built
# #             import paperqa
# #             docs = paperqa.Docs()
# #             # dataset is pandas dataframe
# #             for _, row in dataset.iterrows():
# #                 key = None
# #                 if ',' not in row['citation string']:
# #                     key = row['citation string']
# #                 docs.add(row['filepath'], row['citation string'], key=key)
# #     else:
# #         return ""
# #     progress(0, "Construyendo índices...")
# #     docs._build_faiss_index()
# #     progress(0.25, "Encolando...")
# #     result = docs.query(question)
# #     progress(1.0, "¡Hecho!")
# #     return result.formatted_answer, result.context


# with gr.Blocks() as demo:
#     gr.Markdown("""
#     # Document Question and Answer adaptado al castellano por Pablo Ascorbe.

#     Este espacio ha sido clonado y adaptado de: https://huggingface.co/spaces/whitead/paper-qa

#     La idea es utilizar un modelo preentrenado de HuggingFace como "distilbert-base-cased-distilled-squad"
#     y responder las preguntas en inglés, para ello, será necesario hacer primero una traducción de los textos en castellano
#     a inglés y luego volver a traducir en sentido contrario.

#     ## Instrucciones:

#     Adjunte su documento, ya sea en formato .txt o .pdf, y pregunte lo que desee.
    
#     """)
#     uploaded_files = gr.File(
#         label="Sus documentos subidos (PDF o txt)", file_count="multiple", )
#     dataset = gr.Dataframe(
#         headers=["filepath", "citation string"],
#         datatype=["str", "str"],
#         col_count=(2, "fixed"),
#         interactive=True,
#         label="Documentos y citas"
#     )
#     buildb = gr.Textbox("⚠️Esperando documentos...",
#                         label="Estado", interactive=False, show_label=True)
#     dataset.change(validate_dataset, inputs=[
#                    dataset], outputs=[buildb])
#     uploaded_files.change(request_pathname, inputs=[
#                           uploaded_files], outputs=[dataset])
#     query = gr.Textbox(
#         placeholder="Introduzca su pregunta aquí...", label="Pregunta")
#     ask = gr.Button("Preguntar")
#     gr.Markdown("## Respuesta")
#     answer = gr.Markdown(label="Respuesta")
#     with gr.Accordion("Contexto", open=False):
#         gr.Markdown(
#             "### Contexto\n\nEl siguiente contexto ha sido utilizado para generar la respuesta:")
#         context = gr.Markdown(label="Contexto")
#     # ask.click(fn=do_ask, inputs=[query, buildb,
#     #                              dataset], outputs=[answer, context])
#     ask.click(fn=do_ask, inputs=[query, buildb,
#                                  dataset], outputs=[answer])

# demo.queue(concurrency_count=20)
# demo.launch(show_error=True)