pablocst commited on
Commit
ebff6ea
1 Parent(s): bc29b0f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -16,7 +16,7 @@ def record_opt(msg):
16
  return f"{date_now()} {msg}\n"
17
 
18
 
19
- def speech_recognize(audio, model_name, hf_token, opt):
20
  opt += record_opt("Transcription starts ...")
21
  yield "Transcribing, please wait..", opt
22
  start = time.monotonic()
@@ -26,7 +26,7 @@ def speech_recognize(audio, model_name, hf_token, opt):
26
  try:
27
  url = API_URL + model_name
28
  print(f">>> url is {url}")
29
- headers = {"Authorization": f"Bearer {hf_token}"}
30
  response = requests.request("POST", url, headers=headers, data=data)
31
  text = json.loads(response.content.decode("utf-8"))
32
  print(f">>> text is {text}")
@@ -48,7 +48,7 @@ with gr.Blocks() as demo:
48
 
49
  👉 The purpose is to practice using the Gradio Audio component and explore using the Huggingface Inference API
50
 
51
- > 💡Tip: You need to fill in the Huggingface token to call the Huggingface Inference API
52
  """
53
  )
54
  with gr.Row():
@@ -67,7 +67,7 @@ with gr.Blocks() as demo:
67
  ],
68
  value="openai/whisper-large-v3",
69
  )
70
- hf_token = gr.Textbox(label="Huggingface token")
71
  with gr.Column():
72
  output = gr.Textbox(label="Transcription results")
73
  operation = gr.Textbox(label="Component operation history")
@@ -91,7 +91,7 @@ with gr.Blocks() as demo:
91
  lambda x: x + record_opt("Finished playing"),
92
  inputs=operation, outputs=operation
93
  )
94
- audio.stop_recording(speech_recognize, inputs=[audio, model_name, hf_token, operation], outputs=[output, operation])
95
 
96
  demo.queue(max_size=4, concurrency_count=4)
97
  demo.launch()
 
16
  return f"{date_now()} {msg}\n"
17
 
18
 
19
+ def speech_recognize(audio, model_name, access_token, opt):
20
  opt += record_opt("Transcription starts ...")
21
  yield "Transcribing, please wait..", opt
22
  start = time.monotonic()
 
26
  try:
27
  url = API_URL + model_name
28
  print(f">>> url is {url}")
29
+ headers = {"Authorization": f"Bearer {access_token}"}
30
  response = requests.request("POST", url, headers=headers, data=data)
31
  text = json.loads(response.content.decode("utf-8"))
32
  print(f">>> text is {text}")
 
48
 
49
  👉 The purpose is to practice using the Gradio Audio component and explore using the Huggingface Inference API
50
 
51
+ > 💡Tip: You need to fill in the Huggingface access token to call the Huggingface Inference API
52
  """
53
  )
54
  with gr.Row():
 
67
  ],
68
  value="openai/whisper-large-v3",
69
  )
70
+ access_token = gr.Textbox(label="Huggingface access token")
71
  with gr.Column():
72
  output = gr.Textbox(label="Transcription results")
73
  operation = gr.Textbox(label="Component operation history")
 
91
  lambda x: x + record_opt("Finished playing"),
92
  inputs=operation, outputs=operation
93
  )
94
+ audio.stop_recording(speech_recognize, inputs=[audio, model_name, access_token, operation], outputs=[output, operation])
95
 
96
  demo.queue(max_size=4, concurrency_count=4)
97
  demo.launch()